definition
let A be
set ;
func varcl A -> set means :
Def1:
(
A c= it & ( for
x,
y being
set st
[x,y] in it holds
x c= it ) & ( for
B being
set st
A c= B & ( for
x,
y being
set st
[x,y] in B holds
x c= B ) holds
it c= B ) );
uniqueness
for b1, b2 being set st A c= b1 & ( for x, y being set st [x,y] in b1 holds
x c= b1 ) & ( for B being set st A c= B & ( for x, y being set st [x,y] in B holds
x c= B ) holds
b1 c= B ) & A c= b2 & ( for x, y being set st [x,y] in b2 holds
x c= b2 ) & ( for B being set st A c= B & ( for x, y being set st [x,y] in B holds
x c= B ) holds
b2 c= B ) holds
b1 = b2
existence
ex b1 being set st
( A c= b1 & ( for x, y being set st [x,y] in b1 holds
x c= b1 ) & ( for B being set st A c= B & ( for x, y being set st [x,y] in B holds
x c= B ) holds
b1 c= B ) )
projectivity
for b1, b2 being set st b2 c= b1 & ( for x, y being set st [x,y] in b1 holds
x c= b1 ) & ( for B being set st b2 c= B & ( for x, y being set st [x,y] in B holds
x c= B ) holds
b1 c= B ) holds
( b1 c= b1 & ( for x, y being set st [x,y] in b1 holds
x c= b1 ) & ( for B being set st b1 c= B & ( for x, y being set st [x,y] in B holds
x c= B ) holds
b1 c= B ) )
;
end;
deffunc H1( set , set ) -> set = { [(varcl A),j] where A is Subset of $2, j is Element of NAT : A is finite } ;
definition
existence
ex b1 being set ex V being ManySortedSet of NAT st
( b1 = Union V & V . 0 = { [{},i] where i is Element of NAT : verum } & ( for n being Nat holds V . (n + 1) = { [(varcl A),j] where A is Subset of (V . n), j is Element of NAT : A is finite } ) )
uniqueness
for b1, b2 being set st ex V being ManySortedSet of NAT st
( b1 = Union V & V . 0 = { [{},i] where i is Element of NAT : verum } & ( for n being Nat holds V . (n + 1) = { [(varcl A),j] where A is Subset of (V . n), j is Element of NAT : A is finite } ) ) & ex V being ManySortedSet of NAT st
( b2 = Union V & V . 0 = { [{},i] where i is Element of NAT : verum } & ( for n being Nat holds V . (n + 1) = { [(varcl A),j] where A is Subset of (V . n), j is Element of NAT : A is finite } ) ) holds
b1 = b2
end;
definition
let C be
ConstructorSignature;
A1:
the
carrier of
C = {a_Type,an_Adj,a_Term}
by Def9;
coherence
a_Type is SortSymbol of C
by A1, ENUMSET1:def 1;
coherence
an_Adj is SortSymbol of C
by A1, ENUMSET1:def 1;
coherence
a_Term is SortSymbol of C
by A1, ENUMSET1:def 1;
A2:
{*,non_op} c= the
carrier' of
C
by Def9;
A3:
* in {*,non_op}
by TARSKI:def 2;
A4:
non_op in {*,non_op}
by TARSKI:def 2;
coherence
non_op is OperSymbol of C
by A2, A4;
coherence
* is OperSymbol of C
by A2, A3;
end;
definition
let C be
initialized ConstructorSignature;
let f be
valuation of
C;
existence
ex b1 being term-transformation of C, MSVars C st
( ( for x being variable holds
( ( x in dom f implies b1 . (x -term C) = f . x ) & ( not x in dom f implies b1 . (x -term C) = x -term C ) ) ) & ( for c being constructor OperSymbol of C
for p, q being FinSequence of QuasiTerms C st len p = len (the_arity_of c) & q = b1 * p holds
b1 . (c -trm p) = c -trm q ) & ( for a being expression of C, an_Adj C holds b1 . ((non_op C) term a) = (non_op C) term (b1 . a) ) & ( for a being expression of C, an_Adj C
for t being expression of C, a_Type C holds b1 . ((ast C) term (a,t)) = (ast C) term ((b1 . a),(b1 . t)) ) )
correctness
uniqueness
for b1, b2 being term-transformation of C, MSVars C st ( for x being variable holds
( ( x in dom f implies b1 . (x -term C) = f . x ) & ( not x in dom f implies b1 . (x -term C) = x -term C ) ) ) & ( for c being constructor OperSymbol of C
for p, q being FinSequence of QuasiTerms C st len p = len (the_arity_of c) & q = b1 * p holds
b1 . (c -trm p) = c -trm q ) & ( for a being expression of C, an_Adj C holds b1 . ((non_op C) term a) = (non_op C) term (b1 . a) ) & ( for a being expression of C, an_Adj C
for t being expression of C, a_Type C holds b1 . ((ast C) term (a,t)) = (ast C) term ((b1 . a),(b1 . t)) ) & ( for x being variable holds
( ( x in dom f implies b2 . (x -term C) = f . x ) & ( not x in dom f implies b2 . (x -term C) = x -term C ) ) ) & ( for c being constructor OperSymbol of C
for p, q being FinSequence of QuasiTerms C st len p = len (the_arity_of c) & q = b2 * p holds
b2 . (c -trm p) = c -trm q ) & ( for a being expression of C, an_Adj C holds b2 . ((non_op C) term a) = (non_op C) term (b2 . a) ) & ( for a being expression of C, an_Adj C
for t being expression of C, a_Type C holds b2 . ((ast C) term (a,t)) = (ast C) term ((b2 . a),(b2 . t)) ) holds
b1 = b2;
end;
:: for C being ConstructorSignature holds the carrier of C = 3
:: by CONSTRSIGN,YELLOW11:1;