begin
theorem Th1:
theorem Th2:
theorem Th3:
theorem Th4:
theorem Th5:
theorem Th6:
theorem
theorem Th8:
theorem Th9:
theorem
theorem Th11:
theorem Th12:
begin
theorem
theorem
theorem
Lm1:
for T being non empty TopStruct
for A being Subset of T
for p being Point of T st p in Cl A holds
for K being Basis of
for Q being Subset of T st Q in K holds
A meets Q
Lm2:
for T being non empty TopStruct
for A being Subset of T
for p being Point of T st ( for K being Basis of
for Q being Subset of T st Q in K holds
A meets Q ) holds
ex K being Basis of st
for Q being Subset of T st Q in K holds
A meets Q
Lm3:
for T being non empty TopStruct
for A being Subset of T
for p being Point of T st ex K being Basis of st
for Q being Subset of T st Q in K holds
A meets Q holds
p in Cl A
theorem
theorem
:: deftheorem Def1 defines basis YELLOW13:def 1 :
for T being TopStruct
for p being Point of T
for b3 being Subset-Family of T holds
( b3 is basis of p iff for A being Subset of T st p in Int A holds
ex P being Subset of T st
( P in b3 & p in Int P & P c= A ) );
:: deftheorem defines basis YELLOW13:def 2 :
for T being non empty TopSpace
for p being Point of T
for b3 being Subset-Family of T holds
( b3 is basis of p iff for A being a_neighborhood of p ex P being a_neighborhood of p st
( P in b3 & P c= A ) );
theorem Th18:
theorem Th19:
:: deftheorem Def3 defines correct YELLOW13:def 3 :
for T being TopStruct
for p being Point of T
for P being basis of p holds
( P is correct iff for A being Subset of T holds
( A in P iff p in Int A ) );
theorem
theorem
theorem
theorem
:: deftheorem Def4 defines basis YELLOW13:def 4 :
for T being TopStruct
for b2 being Subset-Family of T holds
( b2 is basis of T iff for p being Point of T holds b2 is basis of p );
theorem Th24:
theorem Th25:
theorem
theorem
:: deftheorem Def5 defines topological_semilattice YELLOW13:def 5 :
for T being non empty TopSpace-like TopRelStr holds
( T is topological_semilattice iff for f being Function of [:T,T:],T st f = inf_op T holds
f is continuous );
theorem Th28: