begin
:: deftheorem Def1 defines meet SETFAM_1:def 1 :
for X being set
for b2 being set holds
( ( X <> {} implies ( b2 = meet X iff for x being set holds
( x in b2 iff for Y being set st Y in X holds
x in Y ) ) ) & ( not X <> {} implies ( b2 = meet X iff b2 = {} ) ) );
theorem
canceled;
theorem
theorem Th3:
theorem Th4:
theorem
theorem
theorem Th7:
theorem
theorem
theorem
theorem
theorem
:: deftheorem defines is_finer_than SETFAM_1:def 2 :
for SFX, SFY being set holds
( SFX is_finer_than SFY iff for X being set st X in SFX holds
ex Y being set st
( Y in SFY & X c= Y ) );
:: deftheorem defines is_coarser_than SETFAM_1:def 3 :
for SFX, SFY being set holds
( SFY is_coarser_than SFX iff for Y being set st Y in SFY holds
ex X being set st
( X in SFX & X c= Y ) );
theorem
canceled;
theorem
canceled;
theorem
canceled;
theorem
canceled;
theorem
theorem
theorem
theorem
theorem
theorem
canceled;
theorem
theorem
theorem
definition
let SFX,
SFY be
set ;
func UNION (
SFX,
SFY)
-> set means :
Def4:
for
Z being
set holds
(
Z in it iff ex
X,
Y being
set st
(
X in SFX &
Y in SFY &
Z = X \/ Y ) );
existence
ex b1 being set st
for Z being set holds
( Z in b1 iff ex X, Y being set st
( X in SFX & Y in SFY & Z = X \/ Y ) )
uniqueness
for b1, b2 being set st ( for Z being set holds
( Z in b1 iff ex X, Y being set st
( X in SFX & Y in SFY & Z = X \/ Y ) ) ) & ( for Z being set holds
( Z in b2 iff ex X, Y being set st
( X in SFX & Y in SFY & Z = X \/ Y ) ) ) holds
b1 = b2
commutativity
for b1 being set
for SFX, SFY being set st ( for Z being set holds
( Z in b1 iff ex X, Y being set st
( X in SFX & Y in SFY & Z = X \/ Y ) ) ) holds
for Z being set holds
( Z in b1 iff ex X, Y being set st
( X in SFY & Y in SFX & Z = X \/ Y ) )
func INTERSECTION (
SFX,
SFY)
-> set means :
Def5:
for
Z being
set holds
(
Z in it iff ex
X,
Y being
set st
(
X in SFX &
Y in SFY &
Z = X /\ Y ) );
existence
ex b1 being set st
for Z being set holds
( Z in b1 iff ex X, Y being set st
( X in SFX & Y in SFY & Z = X /\ Y ) )
uniqueness
for b1, b2 being set st ( for Z being set holds
( Z in b1 iff ex X, Y being set st
( X in SFX & Y in SFY & Z = X /\ Y ) ) ) & ( for Z being set holds
( Z in b2 iff ex X, Y being set st
( X in SFX & Y in SFY & Z = X /\ Y ) ) ) holds
b1 = b2
commutativity
for b1 being set
for SFX, SFY being set st ( for Z being set holds
( Z in b1 iff ex X, Y being set st
( X in SFX & Y in SFY & Z = X /\ Y ) ) ) holds
for Z being set holds
( Z in b1 iff ex X, Y being set st
( X in SFY & Y in SFX & Z = X /\ Y ) )
func DIFFERENCE (
SFX,
SFY)
-> set means :
Def6:
for
Z being
set holds
(
Z in it iff ex
X,
Y being
set st
(
X in SFX &
Y in SFY &
Z = X \ Y ) );
existence
ex b1 being set st
for Z being set holds
( Z in b1 iff ex X, Y being set st
( X in SFX & Y in SFY & Z = X \ Y ) )
uniqueness
for b1, b2 being set st ( for Z being set holds
( Z in b1 iff ex X, Y being set st
( X in SFX & Y in SFY & Z = X \ Y ) ) ) & ( for Z being set holds
( Z in b2 iff ex X, Y being set st
( X in SFX & Y in SFY & Z = X \ Y ) ) ) holds
b1 = b2
end;
:: deftheorem Def4 defines UNION SETFAM_1:def 4 :
for SFX, SFY being set
for b3 being set holds
( b3 = UNION (SFX,SFY) iff for Z being set holds
( Z in b3 iff ex X, Y being set st
( X in SFX & Y in SFY & Z = X \/ Y ) ) );
:: deftheorem Def5 defines INTERSECTION SETFAM_1:def 5 :
for SFX, SFY being set
for b3 being set holds
( b3 = INTERSECTION (SFX,SFY) iff for Z being set holds
( Z in b3 iff ex X, Y being set st
( X in SFX & Y in SFY & Z = X /\ Y ) ) );
:: deftheorem Def6 defines DIFFERENCE SETFAM_1:def 6 :
for SFX, SFY being set
for b3 being set holds
( b3 = DIFFERENCE (SFX,SFY) iff for Z being set holds
( Z in b3 iff ex X, Y being set st
( X in SFX & Y in SFY & Z = X \ Y ) ) );
theorem
canceled;
theorem
canceled;
theorem
canceled;
theorem
theorem
theorem
theorem
canceled;
theorem
canceled;
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
canceled;
theorem
canceled;
theorem Th44:
:: deftheorem SETFAM_1:def 7 :
canceled;
:: deftheorem Def8 defines COMPLEMENT SETFAM_1:def 8 :
for D being set
for F, b3 being Subset-Family of D holds
( b3 = COMPLEMENT F iff for P being Subset of D holds
( P in b3 iff P ` in F ) );
theorem
canceled;
theorem Th46:
theorem
theorem
begin
theorem
theorem
canceled;
theorem Th51:
theorem
theorem
theorem
theorem
:: deftheorem Def9 defines with_non-empty_elements SETFAM_1:def 9 :
for IT being set holds
( IT is with_non-empty_elements iff not {} in IT );
registration
let A be non
empty set ;
cluster {A} -> with_non-empty_elements ;
coherence
{A} is with_non-empty_elements
let B be non
empty set ;
cluster {A,B} -> with_non-empty_elements ;
coherence
{A,B} is with_non-empty_elements
let C be non
empty set ;
cluster {A,B,C} -> with_non-empty_elements ;
coherence
{A,B,C} is with_non-empty_elements
let D be non
empty set ;
cluster {A,B,C,D} -> with_non-empty_elements ;
coherence
{A,B,C,D} is with_non-empty_elements
let E be non
empty set ;
cluster {A,B,C,D,E} -> with_non-empty_elements ;
coherence
{A,B,C,D,E} is with_non-empty_elements
let F be non
empty set ;
cluster {A,B,C,D,E,F} -> with_non-empty_elements ;
coherence
{A,B,C,D,E,F} is with_non-empty_elements
let G be non
empty set ;
cluster {A,B,C,D,E,F,G} -> with_non-empty_elements ;
coherence
{A,B,C,D,E,F,G} is with_non-empty_elements
let H be non
empty set ;
cluster {A,B,C,D,E,F,G,H} -> with_non-empty_elements ;
coherence
{A,B,C,D,E,F,G,H} is with_non-empty_elements
let I be non
empty set ;
cluster {A,B,C,D,E,F,G,H,I} -> with_non-empty_elements ;
coherence
{A,B,C,D,E,F,G,H,I} is with_non-empty_elements
let J be non
empty set ;
cluster {A,B,C,D,E,F,G,H,I,J} -> with_non-empty_elements ;
coherence
{A,B,C,D,E,F,G,H,I,J} is with_non-empty_elements
end;
theorem
theorem
:: deftheorem Def10 defines Intersect SETFAM_1:def 10 :
for M being set
for B being Subset-Family of M holds
( ( B <> {} implies Intersect B = meet B ) & ( not B <> {} implies Intersect B = M ) );
theorem Th58:
theorem
:: deftheorem Def11 defines empty-membered SETFAM_1:def 11 :
for E being set holds
( E is empty-membered iff for x being non empty set holds not x in E );
:: deftheorem Def12 defines Cover SETFAM_1:def 12 :
for X being set
for b2 being set holds
( b2 is Cover of X iff X c= union b2 );
theorem
theorem Th61:
:: deftheorem Def13 defines with_proper_subsets SETFAM_1:def 13 :
for X being set
for F being Subset-Family of X holds
( F is with_proper_subsets iff not X in F );
theorem
theorem
:: deftheorem SETFAM_1:def 14 :
canceled;