Lm1:
for L being lower-bounded LATTICE st L is algebraic holds
ex X being non empty set ex S being full SubRelStr of BoolePoset X st
( S is infs-inheriting & S is directed-sups-inheriting & L,S are_isomorphic )
Lm2:
for L being LATTICE st ex X being non empty set ex S being full SubRelStr of BoolePoset X st
( S is infs-inheriting & S is directed-sups-inheriting & L,S are_isomorphic ) holds
ex X being non empty set ex c being closure Function of (BoolePoset X),(BoolePoset X) st
( c is directed-sups-preserving & L, Image c are_isomorphic )
Lm3:
for L being LATTICE st ex X being set ex S being full SubRelStr of BoolePoset X st
( S is infs-inheriting & S is directed-sups-inheriting & L,S are_isomorphic ) holds
ex X being set ex c being closure Function of (BoolePoset X),(BoolePoset X) st
( c is directed-sups-preserving & L, Image c are_isomorphic )
Lm4:
for L1, L2 being non empty up-complete Poset
for f being Function of L1,L2 st f is isomorphic holds
for x, y being Element of L1 st x << y holds
f . x << f . y
Lm5:
for L being LATTICE st ex X being set ex c being closure Function of (BoolePoset X),(BoolePoset X) st
( c is directed-sups-preserving & L, Image c are_isomorphic ) holds
L is algebraic