Lm2:
for X being non empty TopSpace
for X0 being non empty maximal_Kolmogorov_subspace of X
for r being continuous Function of X,X0 st r is being_a_retraction holds
for a being Point of X
for b being Point of X0 st a = b holds
r " (Cl {b}) = Cl {a}
Lm3:
for X being non empty TopSpace
for X0 being non empty maximal_Kolmogorov_subspace of X
for r being continuous Function of X,X0 st r is being_a_retraction holds
for A being Subset of X st A = the carrier of X0 holds
for a being Point of X holds A /\ (MaxADSet a) = {(r . a)}
Lm4:
for X being non empty TopSpace
for X0 being non empty maximal_Kolmogorov_subspace of X
for r being continuous Function of X,X0 st r is being_a_retraction holds
for a being Point of X
for b being Point of X0 st a = b holds
MaxADSet a c= r " {b}
Lm5:
for X being non empty TopSpace
for X0 being non empty maximal_Kolmogorov_subspace of X
for r being continuous Function of X,X0 st r is being_a_retraction holds
for a being Point of X
for b being Point of X0 st a = b holds
r " {b} = MaxADSet a
Lm6:
for X being non empty TopSpace
for X0 being non empty maximal_Kolmogorov_subspace of X
for r being continuous Function of X,X0 st r is being_a_retraction holds
for E being Subset of X
for F being Subset of X0 st F = E holds
r " F = MaxADSet E