Lm1:
[.0,(PI / 2).[ c= ].(- (PI / 2)),(PI / 2).[
Lm2:
].(PI / 2),PI.] c= ].(PI / 2),((3 / 2) * PI).[
Lm3:
[.(- (PI / 2)),0.[ c= ].(- PI),0.[
Lm4:
].0,(PI / 2).] c= ].0,PI.[
Lm5:
( 0 in [.0,(PI / 2).[ & PI / 4 in [.0,(PI / 2).[ )
Lm6:
( (3 / 4) * PI in ].(PI / 2),PI.] & PI in ].(PI / 2),PI.] )
Lm7:
( - (PI / 2) in [.(- (PI / 2)),0.[ & - (PI / 4) in [.(- (PI / 2)),0.[ )
Lm8:
( PI / 4 in ].0,(PI / 2).] & PI / 2 in ].0,(PI / 2).] )
Lm9:
].0,(PI / 2).[ c= [.0,(PI / 2).[
by XXREAL_1:22;
then Lm10:
].0,(PI / 2).[ c= dom sec
by Th1;
Lm11:
].(PI / 2),PI.[ c= ].(PI / 2),PI.]
by XXREAL_1:21;
then Lm12:
].(PI / 2),PI.[ c= dom sec
by Th2;
Lm13:
[.0,(PI / 4).] c= [.0,(PI / 2).[
by Lm5, XXREAL_2:def 12;
Lm14:
[.((3 / 4) * PI),PI.] c= ].(PI / 2),PI.]
by Lm6, XXREAL_2:def 12;
Lm15:
].(- (PI / 2)),0.[ c= [.(- (PI / 2)),0.[
by XXREAL_1:22;
then Lm16:
].(- (PI / 2)),0.[ c= dom cosec
by Th3;
Lm17:
].0,(PI / 2).[ c= ].0,(PI / 2).]
by XXREAL_1:21;
then Lm18:
].0,(PI / 2).[ c= dom cosec
by Th4;
Lm19:
[.(- (PI / 2)),(- (PI / 4)).] c= [.(- (PI / 2)),0.[
by Lm7, XXREAL_2:def 12;
Lm20:
[.(PI / 4),(PI / 2).] c= ].0,(PI / 2).]
by Lm8, XXREAL_2:def 12;
].0,(PI / 2).[ = dom (sec | ].0,(PI / 2).[)
by Lm9, Th1, RELAT_1:62, XBOOLE_1:1;
then Lm21:
].0,(PI / 2).[ c= dom ((sec | [.0,(PI / 2).[) | ].0,(PI / 2).[)
by RELAT_1:74, XXREAL_1:22;
].(PI / 2),PI.[ = dom (sec | ].(PI / 2),PI.[)
by Lm11, Th2, RELAT_1:62, XBOOLE_1:1;
then Lm22:
].(PI / 2),PI.[ c= dom ((sec | ].(PI / 2),PI.]) | ].(PI / 2),PI.[)
by RELAT_1:74, XXREAL_1:21;
].(- (PI / 2)),0.[ = dom (cosec | ].(- (PI / 2)),0.[)
by Lm15, Th3, RELAT_1:62, XBOOLE_1:1;
then Lm23:
].(- (PI / 2)),0.[ c= dom ((cosec | [.(- (PI / 2)),0.[) | ].(- (PI / 2)),0.[)
by RELAT_1:74, XXREAL_1:22;
].0,(PI / 2).[ = dom (cosec | ].0,(PI / 2).[)
by Lm17, Th4, RELAT_1:62, XBOOLE_1:1;
then Lm24:
].0,(PI / 2).[ c= dom ((cosec | ].0,(PI / 2).]) | ].0,(PI / 2).[)
by RELAT_1:74, XXREAL_1:21;
Lm25:
arcsec1 " = sec | [.0,(PI / 2).[
by FUNCT_1:43;
Lm26:
arcsec2 " = sec | ].(PI / 2),PI.]
by FUNCT_1:43;
Lm27:
arccosec1 " = cosec | [.(- (PI / 2)),0.[
by FUNCT_1:43;
Lm28:
arccosec2 " = cosec | ].0,(PI / 2).]
by FUNCT_1:43;
Lm29:
dom (sec | [.0,(PI / 4).]) = [.0,(PI / 4).]
Lm30:
dom (sec | [.((3 / 4) * PI),PI.]) = [.((3 / 4) * PI),PI.]
Lm31:
dom (cosec | [.(- (PI / 2)),(- (PI / 4)).]) = [.(- (PI / 2)),(- (PI / 4)).]
Lm32:
dom (cosec | [.(PI / 4),(PI / 2).]) = [.(PI / 4),(PI / 2).]
Lm33:
( dom (sec | [.0,(PI / 2).[) = [.0,(PI / 2).[ & ( for th being Real st th in [.0,(PI / 2).[ holds
(sec | [.0,(PI / 2).[) . th = sec . th ) )
Lm34:
( dom (sec | ].(PI / 2),PI.]) = ].(PI / 2),PI.] & ( for th being Real st th in ].(PI / 2),PI.] holds
(sec | ].(PI / 2),PI.]) . th = sec . th ) )
Lm35:
( dom (cosec | [.(- (PI / 2)),0.[) = [.(- (PI / 2)),0.[ & ( for th being Real st th in [.(- (PI / 2)),0.[ holds
(cosec | [.(- (PI / 2)),0.[) . th = cosec . th ) )
Lm36:
( dom (cosec | ].0,(PI / 2).]) = ].0,(PI / 2).] & ( for th being Real st th in ].0,(PI / 2).] holds
(cosec | ].0,(PI / 2).]) . th = cosec . th ) )
Lm37:
(sec | [.0,(PI / 4).]) | [.0,(PI / 4).] is increasing
Lm38:
(sec | [.((3 / 4) * PI),PI.]) | [.((3 / 4) * PI),PI.] is increasing
Lm39:
(cosec | [.(- (PI / 2)),(- (PI / 4)).]) | [.(- (PI / 2)),(- (PI / 4)).] is decreasing
Lm40:
(cosec | [.(PI / 4),(PI / 2).]) | [.(PI / 4),(PI / 2).] is decreasing
Lm41:
sec | [.0,(PI / 4).] is one-to-one
Lm42:
sec | [.((3 / 4) * PI),PI.] is one-to-one
Lm43:
cosec | [.(- (PI / 2)),(- (PI / 4)).] is one-to-one
Lm44:
cosec | [.(PI / 4),(PI / 2).] is one-to-one