:: Short {S}heffer Stroke-Based Single Axiom for {B}oolean Algebras
:: by Aneta {\L}ukaszuk and Adam Grabowski
::
:: Received May 31, 2004
:: Copyright (c) 2004-2021 Association of Mizar Users
definition
let
L
be non
empty
ShefferStr
;
attr
L
is
satisfying_Sh_1
means
:
Def1
:
:: SHEFFER2:def 1
for
x
,
y
,
z
being
Element
of
L
holds
(
x
|
(
(
y
|
x
)
|
x
)
)
|
(
y
|
(
z
|
x
)
)
=
y
;
end;
::
deftheorem
Def1
defines
satisfying_Sh_1
SHEFFER2:def 1 :
for
L
being non
empty
ShefferStr
holds
(
L
is
satisfying_Sh_1
iff for
x
,
y
,
z
being
Element
of
L
holds
(
x
|
(
(
y
|
x
)
|
x
)
)
|
(
y
|
(
z
|
x
)
)
=
y
);
registration
cluster
non
empty
trivial
->
non
empty
satisfying_Sh_1
for
ShefferStr
;
coherence
for
b
1
being non
empty
ShefferStr
st
b
1
is
trivial
holds
b
1
is
satisfying_Sh_1
by
STRUCT_0:def 10
;
end;
registration
cluster
non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
satisfying_Sh_1
for
ShefferStr
;
existence
ex
b
1
being non
empty
ShefferStr
st
(
b
1
is
satisfying_Sh_1
&
b
1
is
satisfying_Sheffer_1
&
b
1
is
satisfying_Sheffer_2
&
b
1
is
satisfying_Sheffer_3
)
proof
end;
end;
theorem
Th1
:
:: SHEFFER2:1
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
,
u
being
Element
of
L
holds
(
(
x
|
(
y
|
z
)
)
|
(
x
|
(
x
|
(
y
|
z
)
)
)
)
|
(
(
z
|
(
(
x
|
z
)
|
z
)
)
|
(
u
|
(
x
|
(
y
|
z
)
)
)
)
=
z
|
(
(
x
|
z
)
|
z
)
proof
end;
theorem
Th2
:
:: SHEFFER2:2
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
(
x
|
y
)
|
(
(
(
y
|
(
(
z
|
y
)
|
y
)
)
|
(
x
|
y
)
)
|
(
x
|
y
)
)
)
|
z
=
y
|
(
(
z
|
y
)
|
y
)
proof
end;
theorem
Th3
:
:: SHEFFER2:3
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
x
|
(
(
y
|
x
)
|
x
)
)
|
(
y
|
(
z
|
(
(
x
|
z
)
|
z
)
)
)
=
y
proof
end;
theorem
Th4
:
:: SHEFFER2:4
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
being
Element
of
L
holds
x
|
(
(
x
|
(
(
x
|
x
)
|
x
)
)
|
(
y
|
(
x
|
(
(
x
|
x
)
|
x
)
)
)
)
=
x
|
(
(
x
|
x
)
|
x
)
proof
end;
theorem
Th5
:
:: SHEFFER2:5
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
being
Element
of
L
holds
x
|
(
(
x
|
x
)
|
x
)
=
x
|
x
proof
end;
theorem
Th6
:
:: SHEFFER2:6
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
being
Element
of
L
holds
(
x
|
(
(
x
|
x
)
|
x
)
)
|
(
x
|
x
)
=
x
proof
end;
theorem
Th7
:
:: SHEFFER2:7
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
being
Element
of
L
holds
(
x
|
x
)
|
(
x
|
(
y
|
x
)
)
=
x
proof
end;
theorem
Th8
:
:: SHEFFER2:8
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
being
Element
of
L
holds
(
x
|
(
(
(
y
|
y
)
|
x
)
|
x
)
)
|
y
=
y
|
y
proof
end;
theorem
Th9
:
:: SHEFFER2:9
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
being
Element
of
L
holds
(
(
x
|
y
)
|
(
(
(
x
|
y
)
|
(
x
|
y
)
)
|
(
x
|
y
)
)
)
|
(
(
x
|
y
)
|
(
x
|
y
)
)
=
y
|
(
(
(
(
x
|
y
)
|
(
x
|
y
)
)
|
y
)
|
y
)
proof
end;
theorem
Th10
:
:: SHEFFER2:10
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
being
Element
of
L
holds
x
|
(
(
(
(
y
|
x
)
|
(
y
|
x
)
)
|
x
)
|
x
)
=
y
|
x
proof
end;
theorem
Th11
:
:: SHEFFER2:11
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
being
Element
of
L
holds
(
x
|
x
)
|
(
y
|
x
)
=
x
proof
end;
theorem
Th12
:
:: SHEFFER2:12
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
being
Element
of
L
holds
x
|
(
y
|
(
x
|
x
)
)
=
x
|
x
proof
end;
theorem
Th13
:
:: SHEFFER2:13
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
being
Element
of
L
holds
(
(
x
|
y
)
|
(
x
|
y
)
)
|
y
=
x
|
y
proof
end;
theorem
Th14
:
:: SHEFFER2:14
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
being
Element
of
L
holds
x
|
(
(
y
|
x
)
|
x
)
=
y
|
x
proof
end;
theorem
Th15
:
:: SHEFFER2:15
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
x
|
y
)
|
(
x
|
(
z
|
y
)
)
=
x
proof
end;
theorem
Th16
:
:: SHEFFER2:16
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
x
|
(
y
|
z
)
)
|
(
x
|
z
)
=
x
proof
end;
theorem
Th17
:
:: SHEFFER2:17
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
x
|
(
(
x
|
y
)
|
(
z
|
y
)
)
=
x
|
y
proof
end;
theorem
Th18
:
:: SHEFFER2:18
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
(
x
|
(
y
|
z
)
)
|
z
)
|
x
=
x
|
(
y
|
z
)
proof
end;
theorem
Th19
:
:: SHEFFER2:19
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
being
Element
of
L
holds
x
|
(
(
y
|
x
)
|
x
)
=
x
|
y
proof
end;
theorem
Th20
:
:: SHEFFER2:20
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
being
Element
of
L
holds
x
|
y
=
y
|
x
proof
end;
theorem
Th21
:
:: SHEFFER2:21
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
being
Element
of
L
holds
(
x
|
y
)
|
(
x
|
x
)
=
x
proof
end;
theorem
Th22
:
:: SHEFFER2:22
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
x
|
y
)
|
(
y
|
(
z
|
x
)
)
=
y
proof
end;
theorem
Th23
:
:: SHEFFER2:23
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
x
|
(
y
|
z
)
)
|
(
z
|
x
)
=
x
proof
end;
theorem
Th24
:
:: SHEFFER2:24
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
x
|
y
)
|
(
y
|
(
x
|
z
)
)
=
y
proof
end;
theorem
Th25
:
:: SHEFFER2:25
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
x
|
(
y
|
z
)
)
|
(
y
|
x
)
=
x
proof
end;
theorem
Th26
:
:: SHEFFER2:26
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
(
x
|
y
)
|
(
x
|
z
)
)
|
z
=
x
|
z
proof
end;
theorem
Th27
:
:: SHEFFER2:27
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
x
|
(
y
|
(
x
|
(
y
|
z
)
)
)
=
x
|
(
y
|
z
)
proof
end;
theorem
Th28
:
:: SHEFFER2:28
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
x
|
(
y
|
(
x
|
z
)
)
)
|
y
=
y
|
(
x
|
z
)
proof
end;
theorem
Th29
:
:: SHEFFER2:29
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
,
u
being
Element
of
L
holds
(
x
|
(
y
|
z
)
)
|
(
x
|
(
u
|
(
y
|
x
)
)
)
=
(
x
|
(
y
|
z
)
)
|
(
y
|
x
)
proof
end;
theorem
Th30
:
:: SHEFFER2:30
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
x
|
(
y
|
(
x
|
z
)
)
)
|
y
=
y
|
(
z
|
x
)
proof
end;
theorem
Th31
:
:: SHEFFER2:31
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
,
u
being
Element
of
L
holds
(
x
|
(
y
|
z
)
)
|
(
x
|
(
u
|
(
y
|
x
)
)
)
=
x
proof
end;
theorem
Th32
:
:: SHEFFER2:32
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
being
Element
of
L
holds
x
|
(
y
|
(
x
|
y
)
)
=
x
|
x
proof
end;
theorem
Th33
:
:: SHEFFER2:33
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
x
|
(
y
|
z
)
=
x
|
(
z
|
y
)
proof
end;
theorem
Th34
:
:: SHEFFER2:34
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
x
|
(
y
|
(
x
|
(
z
|
(
y
|
x
)
)
)
)
=
x
|
x
proof
end;
theorem
Th35
:
:: SHEFFER2:35
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
x
|
(
y
|
z
)
)
|
(
(
y
|
x
)
|
x
)
=
(
x
|
(
y
|
z
)
)
|
(
x
|
(
y
|
z
)
)
proof
end;
theorem
Th36
:
:: SHEFFER2:36
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
being
Element
of
L
holds
(
x
|
(
y
|
x
)
)
|
y
=
y
|
y
proof
end;
theorem
Th37
:
:: SHEFFER2:37
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
x
|
y
)
|
z
=
z
|
(
y
|
x
)
proof
end;
theorem
Th38
:
:: SHEFFER2:38
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
x
|
(
y
|
(
z
|
(
x
|
y
)
)
)
=
x
|
(
y
|
y
)
proof
end;
theorem
Th39
:
:: SHEFFER2:39
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
(
x
|
y
)
|
y
)
|
(
y
|
(
z
|
x
)
)
=
(
y
|
(
z
|
x
)
)
|
(
y
|
(
z
|
x
)
)
proof
end;
theorem
Th40
:
:: SHEFFER2:40
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
,
u
being
Element
of
L
holds
(
x
|
y
)
|
(
z
|
u
)
=
(
u
|
z
)
|
(
y
|
x
)
proof
end;
theorem
Th41
:
:: SHEFFER2:41
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
x
|
(
y
|
(
(
y
|
x
)
|
z
)
)
=
x
|
(
y
|
y
)
proof
end;
theorem
Th42
:
:: SHEFFER2:42
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
being
Element
of
L
holds
x
|
(
y
|
x
)
=
x
|
(
y
|
y
)
proof
end;
theorem
Th43
:
:: SHEFFER2:43
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
being
Element
of
L
holds
(
x
|
y
)
|
y
=
y
|
(
x
|
x
)
proof
end;
theorem
Th44
:
:: SHEFFER2:44
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
being
Element
of
L
holds
x
|
(
y
|
y
)
=
x
|
(
x
|
y
)
proof
end;
theorem
Th45
:
:: SHEFFER2:45
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
x
|
(
y
|
y
)
)
|
(
x
|
(
z
|
y
)
)
=
(
x
|
(
z
|
y
)
)
|
(
x
|
(
z
|
y
)
)
proof
end;
theorem
Th46
:
:: SHEFFER2:46
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
x
|
(
y
|
z
)
)
|
(
x
|
(
y
|
y
)
)
=
(
x
|
(
y
|
z
)
)
|
(
x
|
(
y
|
z
)
)
proof
end;
theorem
Th47
:
:: SHEFFER2:47
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
x
|
(
(
y
|
y
)
|
(
z
|
(
x
|
(
x
|
y
)
)
)
)
=
x
|
(
(
y
|
y
)
|
(
y
|
y
)
)
proof
end;
theorem
Th48
:
:: SHEFFER2:48
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
(
x
|
(
y
|
z
)
)
|
(
x
|
(
y
|
z
)
)
)
|
(
y
|
y
)
=
x
|
(
y
|
y
)
proof
end;
theorem
Th49
:
:: SHEFFER2:49
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
x
|
(
(
y
|
y
)
|
(
z
|
(
x
|
(
x
|
y
)
)
)
)
=
x
|
y
proof
end;
theorem
Th50
:
:: SHEFFER2:50
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
(
(
x
|
y
)
|
(
x
|
y
)
)
|
(
(
z
|
(
(
x
|
y
)
|
z
)
)
|
(
x
|
y
)
)
)
|
(
x
|
x
)
=
(
z
|
(
(
x
|
y
)
|
z
)
)
|
(
x
|
x
)
proof
end;
theorem
Th51
:
:: SHEFFER2:51
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
x
|
(
(
y
|
z
)
|
x
)
)
|
(
y
|
y
)
=
(
y
|
z
)
|
(
y
|
y
)
proof
end;
theorem
Th52
:
:: SHEFFER2:52
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
x
|
(
(
y
|
z
)
|
x
)
)
|
(
y
|
y
)
=
y
proof
end;
theorem
Th53
:
:: SHEFFER2:53
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
x
|
(
(
y
|
(
(
x
|
z
)
|
y
)
)
|
x
)
=
y
|
(
(
x
|
z
)
|
y
)
proof
end;
theorem
Th54
:
:: SHEFFER2:54
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
x
|
(
(
y
|
(
y
|
(
z
|
x
)
)
)
|
x
)
=
y
|
(
(
x
|
(
y
|
(
x
|
z
)
)
)
|
y
)
proof
end;
theorem
Th55
:
:: SHEFFER2:55
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
x
|
(
(
y
|
(
y
|
(
z
|
x
)
)
)
|
x
)
=
y
|
(
y
|
(
z
|
x
)
)
proof
end;
theorem
Th56
:
:: SHEFFER2:56
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
,
u
being
Element
of
L
holds
x
|
(
y
|
(
z
|
(
z
|
(
u
|
(
y
|
x
)
)
)
)
)
=
x
|
(
y
|
y
)
proof
end;
theorem
Th57
:
:: SHEFFER2:57
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
x
|
(
y
|
(
y
|
(
z
|
(
x
|
y
)
)
)
)
=
x
|
(
y
|
(
x
|
x
)
)
proof
end;
theorem
Th58
:
:: SHEFFER2:58
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
x
|
(
y
|
(
y
|
(
z
|
(
x
|
y
)
)
)
)
=
x
|
x
proof
end;
theorem
Th59
:
:: SHEFFER2:59
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
being
Element
of
L
holds
x
|
(
y
|
(
y
|
y
)
)
=
x
|
x
proof
end;
theorem
Th60
:
:: SHEFFER2:60
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
x
|
(
(
(
y
|
(
z
|
x
)
)
|
(
y
|
(
z
|
x
)
)
)
|
(
z
|
z
)
)
=
x
|
(
y
|
(
z
|
x
)
)
proof
end;
theorem
Th61
:
:: SHEFFER2:61
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
x
|
(
y
|
(
z
|
z
)
)
=
x
|
(
y
|
(
z
|
x
)
)
proof
end;
theorem
Th62
:
:: SHEFFER2:62
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
x
|
(
y
|
(
(
z
|
z
)
|
x
)
)
=
x
|
(
y
|
z
)
proof
end;
theorem
Th63
:
:: SHEFFER2:63
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
x
|
(
y
|
y
)
)
|
(
x
|
(
z
|
(
(
y
|
y
)
|
x
)
)
)
=
(
x
|
(
z
|
y
)
)
|
(
x
|
(
z
|
y
)
)
proof
end;
theorem
Th64
:
:: SHEFFER2:64
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
x
|
(
y
|
y
)
)
|
(
x
|
(
z
|
(
x
|
(
y
|
y
)
)
)
)
=
(
x
|
(
z
|
y
)
)
|
(
x
|
(
z
|
y
)
)
proof
end;
theorem
Th65
:
:: SHEFFER2:65
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
x
|
(
y
|
y
)
)
|
(
x
|
(
z
|
z
)
)
=
(
x
|
(
z
|
y
)
)
|
(
x
|
(
z
|
y
)
)
proof
end;
theorem
Th66
:
:: SHEFFER2:66
for
L
being non
empty
satisfying_Sh_1
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
(
x
|
x
)
|
y
)
|
(
(
z
|
z
)
|
y
)
=
(
y
|
(
x
|
z
)
)
|
(
y
|
(
x
|
z
)
)
proof
end;
theorem
Th67
:
:: SHEFFER2:67
for
L
being non
empty
ShefferStr
st
L
is
satisfying_Sh_1
holds
L
is
satisfying_Sheffer_1
proof
end;
theorem
Th68
:
:: SHEFFER2:68
for
L
being non
empty
ShefferStr
st
L
is
satisfying_Sh_1
holds
L
is
satisfying_Sheffer_2
proof
end;
theorem
Th69
:
:: SHEFFER2:69
for
L
being non
empty
ShefferStr
st
L
is
satisfying_Sh_1
holds
L
is
satisfying_Sheffer_3
proof
end;
registration
cluster
non
empty
Lattice-like
Boolean
well-complemented
de_Morgan
properly_defined
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
satisfying_Sh_1
for
ShefferOrthoLattStr
;
existence
ex
b
1
being non
empty
ShefferOrthoLattStr
st
(
b
1
is
properly_defined
&
b
1
is
Boolean
&
b
1
is
well-complemented
&
b
1
is
Lattice-like
&
b
1
is
de_Morgan
&
b
1
is
satisfying_Sheffer_1
&
b
1
is
satisfying_Sheffer_2
&
b
1
is
satisfying_Sheffer_3
&
b
1
is
satisfying_Sh_1
)
proof
end;
end;
registration
cluster
non
empty
properly_defined
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
->
non
empty
Lattice-like
Boolean
for
ShefferOrthoLattStr
;
coherence
for
b
1
being non
empty
ShefferOrthoLattStr
st
b
1
is
satisfying_Sheffer_1
&
b
1
is
satisfying_Sheffer_2
&
b
1
is
satisfying_Sheffer_3
&
b
1
is
properly_defined
holds
(
b
1
is
Boolean
&
b
1
is
Lattice-like
)
by
SHEFFER1:37
;
cluster
non
empty
Lattice-like
Boolean
well-complemented
properly_defined
->
non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
for
ShefferOrthoLattStr
;
coherence
for
b
1
being non
empty
ShefferOrthoLattStr
st
b
1
is
Boolean
&
b
1
is
Lattice-like
&
b
1
is
well-complemented
&
b
1
is
properly_defined
holds
(
b
1
is
satisfying_Sheffer_1
&
b
1
is
satisfying_Sheffer_2
&
b
1
is
satisfying_Sheffer_3
)
by
SHEFFER1:26
,
SHEFFER1:27
,
SHEFFER1:28
;
end;
theorem
Th70
:
:: SHEFFER2:70
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
x
,
w
being
Element
of
L
holds
w
|
(
(
x
|
x
)
|
x
)
=
w
|
w
proof
end;
theorem
Th71
:
:: SHEFFER2:71
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
p
,
x
being
Element
of
L
holds
x
=
(
x
|
x
)
|
(
p
|
(
p
|
p
)
)
proof
end;
theorem
Th72
:
:: SHEFFER2:72
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
y
,
w
being
Element
of
L
holds
(
w
|
w
)
|
(
w
|
(
y
|
(
y
|
y
)
)
)
=
w
proof
end;
theorem
Th73
:
:: SHEFFER2:73
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
q
,
p
,
y
,
w
being
Element
of
L
holds
(
(
w
|
(
y
|
(
y
|
y
)
)
)
|
p
)
|
(
(
q
|
q
)
|
p
)
=
(
p
|
(
w
|
q
)
)
|
(
p
|
(
w
|
q
)
)
proof
end;
theorem
Th74
:
:: SHEFFER2:74
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
q
,
p
,
x
being
Element
of
L
holds
(
x
|
p
)
|
(
(
q
|
q
)
|
p
)
=
(
p
|
(
(
x
|
x
)
|
q
)
)
|
(
p
|
(
(
x
|
x
)
|
q
)
)
proof
end;
theorem
Th75
:
:: SHEFFER2:75
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
w
,
p
,
y
,
q
being
Element
of
L
holds
(
(
w
|
w
)
|
p
)
|
(
(
q
|
(
y
|
(
y
|
y
)
)
)
|
p
)
=
(
p
|
(
w
|
q
)
)
|
(
p
|
(
w
|
q
)
)
proof
end;
theorem
Th76
:
:: SHEFFER2:76
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
p
,
x
being
Element
of
L
holds
x
=
(
x
|
x
)
|
(
(
p
|
p
)
|
p
)
proof
end;
theorem
Th77
:
:: SHEFFER2:77
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
y
,
w
being
Element
of
L
holds
(
w
|
w
)
|
(
w
|
(
(
y
|
y
)
|
y
)
)
=
w
proof
end;
theorem
Th78
:
:: SHEFFER2:78
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
y
,
w
being
Element
of
L
holds
(
w
|
(
(
y
|
y
)
|
y
)
)
|
(
w
|
w
)
=
w
proof
end;
theorem
Th79
:
:: SHEFFER2:79
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
p
,
y
,
w
being
Element
of
L
holds
(
w
|
(
(
y
|
y
)
|
y
)
)
|
(
p
|
(
p
|
p
)
)
=
w
proof
end;
theorem
Th80
:
:: SHEFFER2:80
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
p
,
x
,
y
being
Element
of
L
holds
(
(
y
|
(
x
|
x
)
)
|
(
y
|
(
x
|
x
)
)
)
|
(
p
|
(
p
|
p
)
)
=
(
x
|
x
)
|
y
proof
end;
theorem
Th81
:
:: SHEFFER2:81
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
x
,
y
being
Element
of
L
holds
y
|
(
x
|
x
)
=
(
x
|
x
)
|
y
proof
end;
theorem
Th82
:
:: SHEFFER2:82
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
y
,
w
being
Element
of
L
holds
w
|
y
=
(
(
y
|
y
)
|
(
y
|
y
)
)
|
w
proof
end;
theorem
Th83
:
:: SHEFFER2:83
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
y
,
w
being
Element
of
L
holds
w
|
y
=
y
|
w
proof
end;
theorem
Th84
:
:: SHEFFER2:84
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
x
,
p
being
Element
of
L
holds
(
p
|
x
)
|
(
p
|
(
(
x
|
x
)
|
(
x
|
x
)
)
)
=
(
(
(
x
|
x
)
|
(
x
|
x
)
)
|
p
)
|
(
(
(
x
|
x
)
|
(
x
|
x
)
)
|
p
)
proof
end;
theorem
Th85
:
:: SHEFFER2:85
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
x
,
p
being
Element
of
L
holds
(
p
|
x
)
|
(
p
|
x
)
=
(
(
(
x
|
x
)
|
(
x
|
x
)
)
|
p
)
|
(
(
(
x
|
x
)
|
(
x
|
x
)
)
|
p
)
proof
end;
theorem
Th86
:
:: SHEFFER2:86
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
x
,
p
being
Element
of
L
holds
(
p
|
x
)
|
(
p
|
x
)
=
(
x
|
p
)
|
(
(
(
x
|
x
)
|
(
x
|
x
)
)
|
p
)
proof
end;
theorem
Th87
:
:: SHEFFER2:87
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
x
,
p
being
Element
of
L
holds
(
p
|
x
)
|
(
p
|
x
)
=
(
x
|
p
)
|
(
x
|
p
)
proof
end;
theorem
Th88
:
:: SHEFFER2:88
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
y
,
q
,
w
being
Element
of
L
holds
(
(
w
|
q
)
|
(
(
y
|
y
)
|
y
)
)
|
(
(
w
|
q
)
|
(
w
|
q
)
)
=
(
(
w
|
w
)
|
(
w
|
q
)
)
|
(
(
q
|
q
)
|
(
w
|
q
)
)
proof
end;
theorem
Th89
:
:: SHEFFER2:89
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
q
,
w
being
Element
of
L
holds
w
|
q
=
(
(
w
|
w
)
|
(
w
|
q
)
)
|
(
(
q
|
q
)
|
(
w
|
q
)
)
proof
end;
theorem
Th90
:
:: SHEFFER2:90
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
q
,
p
being
Element
of
L
holds
(
p
|
p
)
|
(
p
|
(
(
q
|
q
)
|
q
)
)
=
(
(
(
q
|
q
)
|
(
q
|
q
)
)
|
p
)
|
(
(
q
|
q
)
|
p
)
proof
end;
theorem
Th91
:
:: SHEFFER2:91
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
p
,
q
being
Element
of
L
holds
p
=
(
(
(
q
|
q
)
|
(
q
|
q
)
)
|
p
)
|
(
(
q
|
q
)
|
p
)
proof
end;
theorem
Th92
:
:: SHEFFER2:92
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
p
,
q
being
Element
of
L
holds
p
=
(
q
|
p
)
|
(
(
q
|
q
)
|
p
)
proof
end;
theorem
Th93
:
:: SHEFFER2:93
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
z
,
w
,
x
being
Element
of
L
holds
(
(
(
x
|
x
)
|
w
)
|
(
(
z
|
z
)
|
w
)
)
|
(
(
w
|
(
x
|
z
)
)
|
(
w
|
(
x
|
z
)
)
)
=
(
(
w
|
w
)
|
(
w
|
(
x
|
z
)
)
)
|
(
(
(
x
|
z
)
|
(
x
|
z
)
)
|
(
w
|
(
x
|
z
)
)
)
proof
end;
theorem
Th94
:
:: SHEFFER2:94
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
z
,
w
,
x
being
Element
of
L
holds
(
(
(
x
|
x
)
|
w
)
|
(
(
z
|
z
)
|
w
)
)
|
(
(
w
|
(
x
|
z
)
)
|
(
w
|
(
x
|
z
)
)
)
=
w
|
(
x
|
z
)
proof
end;
theorem
Th95
:
:: SHEFFER2:95
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
w
,
p
being
Element
of
L
holds
(
p
|
p
)
|
(
p
|
(
w
|
(
w
|
w
)
)
)
=
(
(
w
|
w
)
|
p
)
|
(
(
(
w
|
w
)
|
(
w
|
w
)
)
|
p
)
proof
end;
theorem
Th96
:
:: SHEFFER2:96
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
p
,
w
being
Element
of
L
holds
p
=
(
(
w
|
w
)
|
p
)
|
(
(
(
w
|
w
)
|
(
w
|
w
)
)
|
p
)
proof
end;
theorem
Th97
:
:: SHEFFER2:97
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
p
,
w
being
Element
of
L
holds
p
=
(
(
w
|
w
)
|
p
)
|
(
w
|
p
)
proof
end;
theorem
Th98
:
:: SHEFFER2:98
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
z
,
q
,
x
being
Element
of
L
holds
(
(
(
x
|
x
)
|
q
)
|
(
(
z
|
z
)
|
q
)
)
|
(
(
q
|
(
x
|
z
)
)
|
(
q
|
(
x
|
z
)
)
)
=
(
(
(
z
|
z
)
|
(
z
|
z
)
)
|
(
(
x
|
x
)
|
q
)
)
|
(
(
q
|
q
)
|
(
(
x
|
x
)
|
q
)
)
proof
end;
theorem
Th99
:
:: SHEFFER2:99
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
q
,
z
,
x
being
Element
of
L
holds
q
|
(
x
|
z
)
=
(
(
(
z
|
z
)
|
(
z
|
z
)
)
|
(
(
x
|
x
)
|
q
)
)
|
(
(
q
|
q
)
|
(
(
x
|
x
)
|
q
)
)
proof
end;
theorem
Th100
:
:: SHEFFER2:100
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
q
,
z
,
x
being
Element
of
L
holds
q
|
(
x
|
z
)
=
(
z
|
(
(
x
|
x
)
|
q
)
)
|
(
(
q
|
q
)
|
(
(
x
|
x
)
|
q
)
)
proof
end;
theorem
Th101
:
:: SHEFFER2:101
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
w
,
y
being
Element
of
L
holds
w
|
w
=
(
(
y
|
y
)
|
y
)
|
w
proof
end;
theorem
Th102
:
:: SHEFFER2:102
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
w
,
p
being
Element
of
L
holds
(
p
|
w
)
|
(
(
w
|
w
)
|
p
)
=
p
proof
end;
theorem
Th103
:
:: SHEFFER2:103
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
y
,
w
being
Element
of
L
holds
(
w
|
w
)
|
(
(
w
|
w
)
|
(
(
y
|
y
)
|
y
)
)
=
(
y
|
y
)
|
y
proof
end;
theorem
Th104
:
:: SHEFFER2:104
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
y
,
w
being
Element
of
L
holds
(
w
|
w
)
|
w
=
(
y
|
y
)
|
y
proof
end;
theorem
Th105
:
:: SHEFFER2:105
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
p
,
w
being
Element
of
L
holds
(
w
|
p
)
|
(
p
|
(
w
|
w
)
)
=
p
proof
end;
theorem
Th106
:
:: SHEFFER2:106
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
w
,
p
being
Element
of
L
holds
(
p
|
(
w
|
w
)
)
|
(
w
|
p
)
=
p
proof
end;
theorem
Th107
:
:: SHEFFER2:107
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
p
,
w
being
Element
of
L
holds
(
w
|
p
)
|
(
w
|
(
p
|
p
)
)
=
w
proof
end;
theorem
Th108
:
:: SHEFFER2:108
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
x
,
y
being
Element
of
L
holds
y
|
(
(
(
y
|
(
x
|
x
)
)
|
(
y
|
(
x
|
x
)
)
)
|
(
x
|
y
)
)
=
x
|
y
proof
end;
theorem
Th109
:
:: SHEFFER2:109
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
p
,
w
being
Element
of
L
holds
(
w
|
(
p
|
p
)
)
|
(
w
|
p
)
=
w
proof
end;
theorem
Th110
:
:: SHEFFER2:110
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
p
,
w
,
q
,
y
being
Element
of
L
holds
(
(
(
y
|
y
)
|
y
)
|
q
)
|
(
(
w
|
w
)
|
q
)
=
(
q
|
(
(
(
p
|
(
p
|
p
)
)
|
(
p
|
(
p
|
p
)
)
)
|
w
)
)
|
(
q
|
(
(
(
p
|
(
p
|
p
)
)
|
(
p
|
(
p
|
p
)
)
)
|
w
)
)
proof
end;
theorem
Th111
:
:: SHEFFER2:111
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
q
,
w
,
p
being
Element
of
L
holds
(
q
|
q
)
|
(
(
w
|
w
)
|
q
)
=
(
q
|
(
(
(
p
|
(
p
|
p
)
)
|
(
p
|
(
p
|
p
)
)
)
|
w
)
)
|
(
q
|
(
(
(
p
|
(
p
|
p
)
)
|
(
p
|
(
p
|
p
)
)
)
|
w
)
)
proof
end;
theorem
Th112
:
:: SHEFFER2:112
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
w
,
y
,
p
being
Element
of
L
holds
(
w
|
p
)
|
(
w
|
(
p
|
(
y
|
(
y
|
y
)
)
)
)
=
w
proof
end;
theorem
Th113
:
:: SHEFFER2:113
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
w
,
y
,
p
being
Element
of
L
holds
(
w
|
(
p
|
(
y
|
(
y
|
y
)
)
)
)
|
(
w
|
p
)
=
w
proof
end;
theorem
Th114
:
:: SHEFFER2:114
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
q
,
p
,
y
being
Element
of
L
holds
(
(
(
y
|
y
)
|
y
)
|
p
)
|
(
(
q
|
q
)
|
p
)
=
(
p
|
(
(
p
|
p
)
|
q
)
)
|
(
p
|
(
(
p
|
p
)
|
q
)
)
proof
end;
theorem
Th115
:
:: SHEFFER2:115
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
q
,
z
,
x
being
Element
of
L
holds
(
(
q
|
(
(
x
|
x
)
|
z
)
)
|
(
q
|
(
(
x
|
x
)
|
z
)
)
)
|
(
(
x
|
q
)
|
(
(
z
|
z
)
|
q
)
)
=
(
(
(
z
|
z
)
|
(
z
|
z
)
)
|
(
x
|
q
)
)
|
(
(
q
|
q
)
|
(
x
|
q
)
)
proof
end;
theorem
Th116
:
:: SHEFFER2:116
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
q
,
z
,
x
being
Element
of
L
holds
(
(
q
|
(
(
x
|
x
)
|
z
)
)
|
(
q
|
(
(
x
|
x
)
|
z
)
)
)
|
(
(
x
|
q
)
|
(
(
z
|
z
)
|
q
)
)
=
(
z
|
(
x
|
q
)
)
|
(
(
q
|
q
)
|
(
x
|
q
)
)
proof
end;
theorem
Th117
:
:: SHEFFER2:117
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
w
,
q
,
z
being
Element
of
L
holds
(
(
w
|
w
)
|
(
(
z
|
z
)
|
q
)
)
|
(
(
q
|
(
(
q
|
q
)
|
z
)
)
|
(
q
|
(
(
q
|
q
)
|
z
)
)
)
=
(
(
(
z
|
z
)
|
q
)
|
(
w
|
q
)
)
|
(
(
(
z
|
z
)
|
q
)
|
(
w
|
q
)
)
proof
end;
theorem
Th118
:
:: SHEFFER2:118
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
q
,
p
,
x
being
Element
of
L
holds
(
(
p
|
(
x
|
p
)
)
|
(
p
|
(
x
|
p
)
)
)
|
(
q
|
(
q
|
q
)
)
=
(
x
|
x
)
|
p
proof
end;
theorem
Th119
:
:: SHEFFER2:119
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
p
,
x
being
Element
of
L
holds
p
|
(
x
|
p
)
=
(
x
|
x
)
|
p
proof
end;
theorem
Th120
:
:: SHEFFER2:120
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
p
,
y
being
Element
of
L
holds
(
y
|
p
)
|
(
(
y
|
y
)
|
p
)
=
(
p
|
p
)
|
(
y
|
p
)
proof
end;
theorem
Th121
:
:: SHEFFER2:121
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
x
,
y
being
Element
of
L
holds
x
=
(
x
|
x
)
|
(
y
|
x
)
proof
end;
theorem
Th122
:
:: SHEFFER2:122
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
x
,
y
being
Element
of
L
holds
(
y
|
x
)
|
x
=
(
(
x
|
(
y
|
y
)
)
|
(
x
|
(
y
|
y
)
)
)
|
(
y
|
x
)
proof
end;
theorem
Th123
:
:: SHEFFER2:123
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
x
,
z
,
y
being
Element
of
L
holds
(
(
x
|
(
(
y
|
y
)
|
z
)
)
|
(
x
|
(
(
y
|
y
)
|
z
)
)
)
|
(
(
y
|
x
)
|
(
(
z
|
z
)
|
x
)
)
=
(
z
|
(
y
|
x
)
)
|
x
proof
end;
theorem
Th124
:
:: SHEFFER2:124
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
x
,
y
,
z
being
Element
of
L
holds
(
x
|
(
(
(
z
|
(
z
|
z
)
)
|
(
z
|
(
z
|
z
)
)
)
|
y
)
)
|
(
x
|
(
(
(
z
|
(
z
|
z
)
)
|
(
z
|
(
z
|
z
)
)
)
|
y
)
)
=
x
proof
end;
theorem
Th125
:
:: SHEFFER2:125
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
x
,
z
,
y
being
Element
of
L
holds
(
x
|
(
(
y
|
y
)
|
z
)
)
|
z
=
z
|
(
y
|
x
)
proof
end;
theorem
Th126
:
:: SHEFFER2:126
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
x
,
y
being
Element
of
L
holds
x
|
(
(
y
|
x
)
|
x
)
=
y
|
x
proof
end;
theorem
Th127
:
:: SHEFFER2:127
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
z
,
y
,
x
being
Element
of
L
holds
y
=
(
(
(
x
|
x
)
|
x
)
|
y
)
|
(
(
z
|
z
)
|
y
)
proof
end;
theorem
Th128
:
:: SHEFFER2:128
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
z
,
y
being
Element
of
L
holds
(
y
|
(
(
y
|
y
)
|
z
)
)
|
(
y
|
(
(
y
|
y
)
|
z
)
)
=
y
proof
end;
theorem
Th129
:
:: SHEFFER2:129
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
x
,
z
,
y
being
Element
of
L
holds
(
(
(
y
|
y
)
|
z
)
|
(
x
|
z
)
)
|
(
(
(
y
|
y
)
|
z
)
|
(
x
|
z
)
)
=
(
(
x
|
x
)
|
(
(
y
|
y
)
|
z
)
)
|
z
proof
end;
theorem
Th130
:
:: SHEFFER2:130
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
x
,
z
,
y
being
Element
of
L
holds
(
(
(
y
|
y
)
|
z
)
|
(
x
|
z
)
)
|
(
(
(
y
|
y
)
|
z
)
|
(
x
|
z
)
)
=
z
|
(
y
|
(
x
|
x
)
)
proof
end;
theorem
Th131
:
:: SHEFFER2:131
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
y
,
x
being
Element
of
L
holds
(
(
x
|
y
)
|
(
x
|
y
)
)
|
x
=
x
|
y
proof
end;
theorem
Th132
:
:: SHEFFER2:132
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
p
,
w
being
Element
of
L
holds
(
w
|
w
)
|
(
w
|
p
)
=
w
proof
end;
theorem
Th133
:
:: SHEFFER2:133
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
w
,
p
being
Element
of
L
holds
(
p
|
w
)
|
(
w
|
w
)
=
w
proof
end;
theorem
Th134
:
:: SHEFFER2:134
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
p
,
y
,
w
being
Element
of
L
holds
(
w
|
(
y
|
(
y
|
y
)
)
)
|
(
w
|
p
)
=
w
proof
end;
theorem
Th135
:
:: SHEFFER2:135
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
p
,
w
being
Element
of
L
holds
(
w
|
p
)
|
(
w
|
w
)
=
w
proof
end;
theorem
Th136
:
:: SHEFFER2:136
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
y
,
p
,
w
being
Element
of
L
holds
(
w
|
p
)
|
(
w
|
(
y
|
(
y
|
y
)
)
)
=
w
proof
end;
theorem
Th137
:
:: SHEFFER2:137
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
p
,
q
,
w
,
y
,
x
being
Element
of
L
holds
(
(
(
x
|
(
y
|
(
y
|
y
)
)
)
|
w
)
|
(
(
q
|
q
)
|
w
)
)
|
(
(
w
|
(
x
|
q
)
)
|
(
w
|
(
x
|
q
)
)
)
=
(
(
w
|
(
p
|
(
p
|
p
)
)
)
|
(
w
|
(
x
|
q
)
)
)
|
(
(
(
x
|
q
)
|
(
x
|
q
)
)
|
(
w
|
(
x
|
q
)
)
)
proof
end;
theorem
Th138
:
:: SHEFFER2:138
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
q
,
w
,
y
,
x
being
Element
of
L
holds
(
(
(
x
|
(
y
|
(
y
|
y
)
)
)
|
w
)
|
(
(
q
|
q
)
|
w
)
)
|
(
(
w
|
(
x
|
q
)
)
|
(
w
|
(
x
|
q
)
)
)
=
w
|
(
(
(
x
|
q
)
|
(
x
|
q
)
)
|
(
w
|
(
x
|
q
)
)
)
proof
end;
theorem
Th139
:
:: SHEFFER2:139
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
q
,
w
,
y
,
x
being
Element
of
L
holds
(
(
(
x
|
(
y
|
(
y
|
y
)
)
)
|
w
)
|
(
(
q
|
q
)
|
w
)
)
|
(
(
w
|
(
x
|
q
)
)
|
(
w
|
(
x
|
q
)
)
)
=
w
|
(
x
|
q
)
proof
end;
theorem
Th140
:
:: SHEFFER2:140
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
z
,
p
,
q
,
y
,
x
being
Element
of
L
holds
(
(
(
x
|
(
y
|
(
y
|
y
)
)
)
|
q
)
|
(
(
z
|
z
)
|
q
)
)
|
(
(
q
|
(
x
|
z
)
)
|
(
q
|
(
x
|
z
)
)
)
=
(
(
(
z
|
z
)
|
(
p
|
(
p
|
p
)
)
)
|
(
(
x
|
(
y
|
(
y
|
y
)
)
)
|
q
)
)
|
(
(
q
|
q
)
|
(
(
x
|
(
y
|
(
y
|
y
)
)
)
|
q
)
)
proof
end;
theorem
Th141
:
:: SHEFFER2:141
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
z
,
p
,
q
,
y
,
x
being
Element
of
L
holds
q
|
(
x
|
z
)
=
(
(
(
z
|
z
)
|
(
p
|
(
p
|
p
)
)
)
|
(
(
x
|
(
y
|
(
y
|
y
)
)
)
|
q
)
)
|
(
(
q
|
q
)
|
(
(
x
|
(
y
|
(
y
|
y
)
)
)
|
q
)
)
proof
end;
theorem
Th142
:
:: SHEFFER2:142
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
z
,
q
,
y
,
x
being
Element
of
L
holds
q
|
(
x
|
z
)
=
(
z
|
(
(
x
|
(
y
|
(
y
|
y
)
)
)
|
q
)
)
|
(
(
q
|
q
)
|
(
(
x
|
(
y
|
(
y
|
y
)
)
)
|
q
)
)
proof
end;
theorem
Th143
:
:: SHEFFER2:143
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
v
,
p
,
y
,
x
being
Element
of
L
holds
p
|
(
x
|
v
)
=
(
v
|
(
(
x
|
(
y
|
(
y
|
y
)
)
)
|
p
)
)
|
p
proof
end;
theorem
Th144
:
:: SHEFFER2:144
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
y
,
w
,
z
,
v
,
x
being
Element
of
L
holds
(
w
|
(
z
|
(
x
|
v
)
)
)
|
(
(
(
x
|
(
y
|
(
y
|
y
)
)
)
|
z
)
|
(
(
v
|
v
)
|
z
)
)
=
z
|
(
x
|
v
)
proof
end;
theorem
Th145
:
:: SHEFFER2:145
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
y
,
z
,
x
being
Element
of
L
holds
(
(
y
|
(
(
x
|
x
)
|
z
)
)
|
(
y
|
(
(
x
|
x
)
|
z
)
)
)
|
(
(
x
|
y
)
|
(
(
z
|
z
)
|
y
)
)
=
y
|
(
(
x
|
x
)
|
z
)
proof
end;
theorem
Th146
:
:: SHEFFER2:146
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
z
,
y
,
x
being
Element
of
L
holds
(
z
|
(
x
|
y
)
)
|
y
=
y
|
(
(
x
|
x
)
|
z
)
proof
end;
theorem
Th147
:
:: SHEFFER2:147
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
x
,
w
,
y
,
z
being
Element
of
L
holds
(
(
(
x
|
x
)
|
w
)
|
(
(
z
|
(
y
|
(
y
|
y
)
)
)
|
w
)
)
|
w
=
w
|
(
x
|
z
)
proof
end;
theorem
Th148
:
:: SHEFFER2:148
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
z
,
w
,
x
being
Element
of
L
holds
w
|
(
z
|
(
(
x
|
x
)
|
w
)
)
=
w
|
(
x
|
z
)
proof
end;
theorem
Th149
:
:: SHEFFER2:149
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
p
,
z
,
y
,
x
being
Element
of
L
holds
(
(
z
|
(
x
|
p
)
)
|
(
z
|
(
x
|
p
)
)
)
|
(
(
(
x
|
(
y
|
(
y
|
y
)
)
)
|
z
)
|
(
(
p
|
p
)
|
z
)
)
=
(
(
(
p
|
p
)
|
z
)
|
(
(
x
|
(
y
|
(
y
|
y
)
)
)
|
z
)
)
|
(
(
(
p
|
p
)
|
z
)
|
(
(
x
|
(
y
|
(
y
|
y
)
)
)
|
z
)
)
proof
end;
theorem
Th150
:
:: SHEFFER2:150
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
p
,
z
,
y
,
x
being
Element
of
L
holds
z
|
(
x
|
p
)
=
(
(
(
p
|
p
)
|
z
)
|
(
(
x
|
(
y
|
(
y
|
y
)
)
)
|
z
)
)
|
(
(
(
p
|
p
)
|
z
)
|
(
(
x
|
(
y
|
(
y
|
y
)
)
)
|
z
)
)
proof
end;
theorem
Th151
:
:: SHEFFER2:151
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
z
,
p
,
y
,
x
being
Element
of
L
holds
z
|
(
x
|
p
)
=
z
|
(
p
|
(
(
x
|
(
y
|
(
y
|
y
)
)
)
|
(
x
|
(
y
|
(
y
|
y
)
)
)
)
)
proof
end;
theorem
Th152
:
:: SHEFFER2:152
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
z
,
p
,
x
being
Element
of
L
holds
z
|
(
x
|
p
)
=
z
|
(
p
|
x
)
proof
end;
theorem
Th153
:
:: SHEFFER2:153
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
w
,
q
,
p
being
Element
of
L
holds
(
p
|
q
)
|
w
=
w
|
(
q
|
p
)
proof
end;
theorem
Th154
:
:: SHEFFER2:154
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
w
,
p
,
q
being
Element
of
L
holds
(
(
q
|
p
)
|
w
)
|
q
=
q
|
(
(
p
|
p
)
|
w
)
proof
end;
theorem
Th155
:
:: SHEFFER2:155
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
z
,
w
,
y
,
x
being
Element
of
L
holds
w
|
x
=
w
|
(
(
x
|
z
)
|
(
(
(
x
|
(
y
|
(
y
|
y
)
)
)
|
(
x
|
(
y
|
(
y
|
y
)
)
)
)
|
w
)
)
proof
end;
theorem
Th156
:
:: SHEFFER2:156
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
w
,
z
,
x
being
Element
of
L
holds
w
|
x
=
w
|
(
(
x
|
z
)
|
(
x
|
w
)
)
proof
end;
theorem
Th157
:
:: SHEFFER2:157
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
q
,
x
,
z
,
y
being
Element
of
L
holds
(
x
|
y
)
|
(
(
(
x
|
(
y
|
(
z
|
(
z
|
z
)
)
)
)
|
q
)
|
x
)
=
(
x
|
y
)
|
(
x
|
(
y
|
(
z
|
(
z
|
z
)
)
)
)
proof
end;
theorem
Th158
:
:: SHEFFER2:158
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
x
,
q
,
z
,
y
being
Element
of
L
holds
(
x
|
y
)
|
(
x
|
(
(
(
y
|
(
z
|
(
z
|
z
)
)
)
|
(
y
|
(
z
|
(
z
|
z
)
)
)
)
|
q
)
)
=
(
x
|
y
)
|
(
x
|
(
y
|
(
z
|
(
z
|
z
)
)
)
)
proof
end;
theorem
Th159
:
:: SHEFFER2:159
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
z
,
x
,
q
,
y
being
Element
of
L
holds
(
x
|
y
)
|
(
x
|
(
y
|
q
)
)
=
(
x
|
y
)
|
(
x
|
(
y
|
(
z
|
(
z
|
z
)
)
)
)
proof
end;
theorem
Th160
:
:: SHEFFER2:160
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
for
x
,
q
,
y
being
Element
of
L
holds
(
x
|
y
)
|
(
x
|
(
y
|
q
)
)
=
x
proof
end;
theorem
Th161
:
:: SHEFFER2:161
for
L
being non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
ShefferStr
holds
L
is
satisfying_Sh_1
proof
end;
registration
cluster
non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
->
non
empty
satisfying_Sh_1
for
ShefferStr
;
coherence
for
b
1
being non
empty
ShefferStr
st
b
1
is
satisfying_Sheffer_1
&
b
1
is
satisfying_Sheffer_2
&
b
1
is
satisfying_Sheffer_3
holds
b
1
is
satisfying_Sh_1
by
Th161
;
cluster
non
empty
satisfying_Sh_1
->
non
empty
satisfying_Sheffer_1
satisfying_Sheffer_2
satisfying_Sheffer_3
for
ShefferStr
;
coherence
for
b
1
being non
empty
ShefferStr
st
b
1
is
satisfying_Sh_1
holds
(
b
1
is
satisfying_Sheffer_1
&
b
1
is
satisfying_Sheffer_2
&
b
1
is
satisfying_Sheffer_3
)
by
Th67
,
Th68
,
Th69
;
end;
registration
cluster
non
empty
properly_defined
satisfying_Sh_1
->
non
empty
Lattice-like
Boolean
for
ShefferOrthoLattStr
;
coherence
for
b
1
being non
empty
ShefferOrthoLattStr
st
b
1
is
satisfying_Sh_1
&
b
1
is
properly_defined
holds
(
b
1
is
Boolean
&
b
1
is
Lattice-like
)
;
cluster
non
empty
Lattice-like
Boolean
well-complemented
properly_defined
->
non
empty
satisfying_Sh_1
for
ShefferOrthoLattStr
;
coherence
for
b
1
being non
empty
ShefferOrthoLattStr
st
b
1
is
Boolean
&
b
1
is
Lattice-like
&
b
1
is
well-complemented
&
b
1
is
properly_defined
holds
b
1
is
satisfying_Sh_1
;
end;