set D = Data-Locations ;
theorem Th8:
for
s being
State of
SCM+FSA for
p being
Instruction-Sequence of
SCM+FSA for
a being
Int-Location for
k being
Nat for
J being
really-closed good MacroInstruction of
SCM+FSA st
((StepTimes (a,J,p,s)) . k) . (intloc 0) = 1 &
J is_halting_on (StepTimes (a,J,p,s)) . k,
p +* (times* (a,J)) holds
(
((StepTimes (a,J,p,s)) . (k + 1)) . (intloc 0) = 1 & (
((StepTimes (a,J,p,s)) . k) . (1 -stRWNotIn ({a} \/ (UsedILoc J))) > 0 implies
((StepTimes (a,J,p,s)) . (k + 1)) . (1 -stRWNotIn ({a} \/ (UsedILoc J))) = (((StepTimes (a,J,p,s)) . k) . (1 -stRWNotIn ({a} \/ (UsedILoc J)))) - 1 ) )
theorem Th16:
for
s being
State of
SCM+FSA for
p being
Instruction-Sequence of
SCM+FSA for
a being
Int-Location for
k being
Nat for
J being
really-closed good MacroInstruction of
SCM+FSA st
((StepTimes (a,J,p,s)) . k) . (intloc 0) = 1 &
J is_halting_on Initialized ((StepTimes (a,J,p,s)) . k),
p +* (times* (a,J)) &
((StepTimes (a,J,p,s)) . k) . (1 -stRWNotIn ({a} \/ (UsedILoc J))) > 0 holds
((StepTimes (a,J,p,s)) . (k + 1)) | ((UsedILoc J) \/ FinSeq-Locations) = (IExec (J,(p +* (times* (a,J))),((StepTimes (a,J,p,s)) . k))) | ((UsedILoc J) \/ FinSeq-Locations)
theorem
for
s being
State of
SCM+FSA for
p being
Instruction-Sequence of
SCM+FSA for
a being
Int-Location for
k being
Nat for
J being
really-closed good MacroInstruction of
SCM+FSA st (
ProperTimesBody a,
J,
s,
p or
J is
parahalting ) &
k < s . a & (
s . (intloc 0) = 1 or
a is
read-write ) holds
((StepTimes (a,J,p,s)) . (k + 1)) | ((UsedILoc J) \/ FinSeq-Locations) = (IExec (J,(p +* (times* (a,J))),((StepTimes (a,J,p,s)) . k))) | ((UsedILoc J) \/ FinSeq-Locations)