Lm1:
for m being Nat st m >= 1 holds
m + 2 > 1
definition
let m,
k be
Nat;
let r be
Tuple of
m + 2,
k -SD ;
existence
ex b1 being Tuple of m + 2,k -SD st
for i being Nat st i in Seg (m + 2) holds
DigA (b1,i) = M0Digit (r,i)
uniqueness
for b1, b2 being Tuple of m + 2,k -SD st ( for i being Nat st i in Seg (m + 2) holds
DigA (b1,i) = M0Digit (r,i) ) & ( for i being Nat st i in Seg (m + 2) holds
DigA (b2,i) = M0Digit (r,i) ) holds
b1 = b2
end;
definition
let m,
k be
Nat;
let r be
Tuple of
m + 2,
k -SD ;
existence
ex b1 being Tuple of m + 2,k -SD st
for i being Nat st i in Seg (m + 2) holds
DigA (b1,i) = MmaxDigit (r,i)
uniqueness
for b1, b2 being Tuple of m + 2,k -SD st ( for i being Nat st i in Seg (m + 2) holds
DigA (b1,i) = MmaxDigit (r,i) ) & ( for i being Nat st i in Seg (m + 2) holds
DigA (b2,i) = MmaxDigit (r,i) ) holds
b1 = b2
end;
definition
let m,
k be
Nat;
let r be
Tuple of
m + 2,
k -SD ;
existence
ex b1 being Tuple of m + 2,k -SD st
for i being Nat st i in Seg (m + 2) holds
DigA (b1,i) = MminDigit (r,i)
uniqueness
for b1, b2 being Tuple of m + 2,k -SD st ( for i being Nat st i in Seg (m + 2) holds
DigA (b1,i) = MminDigit (r,i) ) & ( for i being Nat st i in Seg (m + 2) holds
DigA (b2,i) = MminDigit (r,i) ) holds
b1 = b2
end;
theorem Th8:
for
mlow,
mhigh,
f being
Integer st
mhigh < mlow + f &
f > 0 holds
ex
s being
Integer st
(
- f < mlow - (s * f) &
mhigh - (s * f) < f )
definition
let m,
k be
Nat;
let r be
Tuple of
m + 2,
k -SD ;
existence
ex b1 being Tuple of m + 2,k -SD st
for i being Nat st i in Seg (m + 2) holds
DigA (b1,i) = MmaskDigit (r,i)
uniqueness
for b1, b2 being Tuple of m + 2,k -SD st ( for i being Nat st i in Seg (m + 2) holds
DigA (b1,i) = MmaskDigit (r,i) ) & ( for i being Nat st i in Seg (m + 2) holds
DigA (b2,i) = MmaskDigit (r,i) ) holds
b1 = b2
end;
definition
let n,
m,
k be
Nat;
existence
ex b1 being Tuple of n,k -SD st
for i being Nat st i in Seg n holds
DigA (b1,i) = FSDMinDigit (m,k,i)
uniqueness
for b1, b2 being Tuple of n,k -SD st ( for i being Nat st i in Seg n holds
DigA (b1,i) = FSDMinDigit (m,k,i) ) & ( for i being Nat st i in Seg n holds
DigA (b2,i) = FSDMinDigit (m,k,i) ) holds
b1 = b2
end;