canceled;
Lm1:
0 ,1,2,3 are_mutually_distinct
;
theorem
for
x1,
x2,
x3,
x4,
X being
set holds
(
{x1,x2,x3,x4} c= X iff (
x1 in X &
x2 in X &
x3 in X &
x4 in X ) )
definition
let A be non
empty set ;
let x,
y,
w,
z be
set ;
let a,
b,
c,
d be
Element of
A;
-->redefine func (
x,
y,
w,
z)
--> (
a,
b,
c,
d)
-> Function of
{x,y,w,z},
A;
coherence
(x,y,w,z) --> (a,b,c,d) is Function of {x,y,w,z},A
end;
definition
coherence
(0,1,2,3) --> (0,0,1,0) is Number
;
coherence
(0,1,2,3) --> (0,0,0,1) is Number
;
end;
reconsider jj = 1, zz = 0 as Element of REAL by XREAL_0:def 1;
Lm2:
<i> = [*zz,jj*]
by ARYTM_0:def 5;
definition
let x,
y,
w,
z be
Real;
func [*x,y,w,z*] -> Element of
QUATERNION means :
Def5:
ex
x9,
y9 being
Element of
REAL st
(
x9 = x &
y9 = y &
it = [*x9,y9*] )
if (
w = 0 &
z = 0 )
otherwise it = (
0,1,2,3)
--> (
x,
y,
w,
z);
consistency
for b1 being Element of QUATERNION holds verum
;
existence
( ( w = 0 & z = 0 implies ex b1 being Element of QUATERNION ex x9, y9 being Element of REAL st
( x9 = x & y9 = y & b1 = [*x9,y9*] ) ) & ( ( not w = 0 or not z = 0 ) implies ex b1 being Element of QUATERNION st b1 = (0,1,2,3) --> (x,y,w,z) ) )
uniqueness
for b1, b2 being Element of QUATERNION holds
( ( w = 0 & z = 0 & ex x9, y9 being Element of REAL st
( x9 = x & y9 = y & b1 = [*x9,y9*] ) & ex x9, y9 being Element of REAL st
( x9 = x & y9 = y & b2 = [*x9,y9*] ) implies b1 = b2 ) & ( ( not w = 0 or not z = 0 ) & b1 = (0,1,2,3) --> (x,y,w,z) & b2 = (0,1,2,3) --> (x,y,w,z) implies b1 = b2 ) )
;
end;
::
deftheorem Def5 defines
[* QUATERNI:def 5 :
for x, y, w, z being Real
for b5 being Element of QUATERNION holds
( ( w = 0 & z = 0 implies ( b5 = [*x,y,w,z*] iff ex x9, y9 being Element of REAL st
( x9 = x & y9 = y & b5 = [*x9,y9*] ) ) ) & ( ( not w = 0 or not z = 0 ) implies ( b5 = [*x,y,w,z*] iff b5 = (0,1,2,3) --> (x,y,w,z) ) ) );
Lm3:
for x, y being Element of REAL holds [*x,y,0,0*] = [*x,y*]
Lm4:
for x, y, z being object st [x,y] = {z} holds
( z = {x} & x = y )
Lm5:
for a, b, c, d being Real holds not (0,1,2,3) --> (a,b,c,d) in REAL
theorem Th5:
for
x1,
x2,
x3,
x4,
y1,
y2,
y3,
y4 being
Real st
[*x1,x2,x3,x4*] = [*y1,y2,y3,y4*] holds
(
x1 = y1 &
x2 = y2 &
x3 = y3 &
x4 = y4 )
definition
let x,
y be
Quaternion;
consider x1,
x2,
x3,
x4 being
Real such that A1:
x = [*x1,x2,x3,x4*]
by Th2;
consider y1,
y2,
y3,
y4 being
Real such that A2:
y = [*y1,y2,y3,y4*]
by Th2;
func x + y -> Number means :
Def6:
ex
x1,
x2,
x3,
x4,
y1,
y2,
y3,
y4 being
Real st
(
x = [*x1,x2,x3,x4*] &
y = [*y1,y2,y3,y4*] &
it = [*(x1 + y1),(x2 + y2),(x3 + y3),(x4 + y4)*] );
existence
ex b1 being Number ex x1, x2, x3, x4, y1, y2, y3, y4 being Real st
( x = [*x1,x2,x3,x4*] & y = [*y1,y2,y3,y4*] & b1 = [*(x1 + y1),(x2 + y2),(x3 + y3),(x4 + y4)*] )
uniqueness
for b1, b2 being Number st ex x1, x2, x3, x4, y1, y2, y3, y4 being Real st
( x = [*x1,x2,x3,x4*] & y = [*y1,y2,y3,y4*] & b1 = [*(x1 + y1),(x2 + y2),(x3 + y3),(x4 + y4)*] ) & ex x1, x2, x3, x4, y1, y2, y3, y4 being Real st
( x = [*x1,x2,x3,x4*] & y = [*y1,y2,y3,y4*] & b2 = [*(x1 + y1),(x2 + y2),(x3 + y3),(x4 + y4)*] ) holds
b1 = b2
commutativity
for b1 being Number
for x, y being Quaternion st ex x1, x2, x3, x4, y1, y2, y3, y4 being Real st
( x = [*x1,x2,x3,x4*] & y = [*y1,y2,y3,y4*] & b1 = [*(x1 + y1),(x2 + y2),(x3 + y3),(x4 + y4)*] ) holds
ex x1, x2, x3, x4, y1, y2, y3, y4 being Real st
( y = [*x1,x2,x3,x4*] & x = [*y1,y2,y3,y4*] & b1 = [*(x1 + y1),(x2 + y2),(x3 + y3),(x4 + y4)*] )
;
end;
::
deftheorem Def6 defines
+ QUATERNI:def 6 :
for x, y being Quaternion
for b3 being Number holds
( b3 = x + y iff ex x1, x2, x3, x4, y1, y2, y3, y4 being Real st
( x = [*x1,x2,x3,x4*] & y = [*y1,y2,y3,y4*] & b3 = [*(x1 + y1),(x2 + y2),(x3 + y3),(x4 + y4)*] ) );
Lm6:
0 = [*0,0,0,0*]
definition
let x,
y be
Quaternion;
consider x1,
x2,
x3,
x4 being
Real such that A1:
x = [*x1,x2,x3,x4*]
by Th2;
consider y1,
y2,
y3,
y4 being
Real such that A2:
y = [*y1,y2,y3,y4*]
by Th2;
func x * y -> Number means :
Def9:
ex
x1,
x2,
x3,
x4,
y1,
y2,
y3,
y4 being
Real st
(
x = [*x1,x2,x3,x4*] &
y = [*y1,y2,y3,y4*] &
it = [*((((x1 * y1) - (x2 * y2)) - (x3 * y3)) - (x4 * y4)),((((x1 * y2) + (x2 * y1)) + (x3 * y4)) - (x4 * y3)),((((x1 * y3) + (y1 * x3)) + (y2 * x4)) - (y4 * x2)),((((x1 * y4) + (x4 * y1)) + (x2 * y3)) - (x3 * y2))*] );
existence
ex b1 being Number ex x1, x2, x3, x4, y1, y2, y3, y4 being Real st
( x = [*x1,x2,x3,x4*] & y = [*y1,y2,y3,y4*] & b1 = [*((((x1 * y1) - (x2 * y2)) - (x3 * y3)) - (x4 * y4)),((((x1 * y2) + (x2 * y1)) + (x3 * y4)) - (x4 * y3)),((((x1 * y3) + (y1 * x3)) + (y2 * x4)) - (y4 * x2)),((((x1 * y4) + (x4 * y1)) + (x2 * y3)) - (x3 * y2))*] )
uniqueness
for b1, b2 being Number st ex x1, x2, x3, x4, y1, y2, y3, y4 being Real st
( x = [*x1,x2,x3,x4*] & y = [*y1,y2,y3,y4*] & b1 = [*((((x1 * y1) - (x2 * y2)) - (x3 * y3)) - (x4 * y4)),((((x1 * y2) + (x2 * y1)) + (x3 * y4)) - (x4 * y3)),((((x1 * y3) + (y1 * x3)) + (y2 * x4)) - (y4 * x2)),((((x1 * y4) + (x4 * y1)) + (x2 * y3)) - (x3 * y2))*] ) & ex x1, x2, x3, x4, y1, y2, y3, y4 being Real st
( x = [*x1,x2,x3,x4*] & y = [*y1,y2,y3,y4*] & b2 = [*((((x1 * y1) - (x2 * y2)) - (x3 * y3)) - (x4 * y4)),((((x1 * y2) + (x2 * y1)) + (x3 * y4)) - (x4 * y3)),((((x1 * y3) + (y1 * x3)) + (y2 * x4)) - (y4 * x2)),((((x1 * y4) + (x4 * y1)) + (x2 * y3)) - (x3 * y2))*] ) holds
b1 = b2
end;
::
deftheorem Def9 defines
* QUATERNI:def 9 :
for x, y being Quaternion
for b3 being Number holds
( b3 = x * y iff ex x1, x2, x3, x4, y1, y2, y3, y4 being Real st
( x = [*x1,x2,x3,x4*] & y = [*y1,y2,y3,y4*] & b3 = [*((((x1 * y1) - (x2 * y2)) - (x3 * y3)) - (x4 * y4)),((((x1 * y2) + (x2 * y1)) + (x3 * y4)) - (x4 * y3)),((((x1 * y3) + (y1 * x3)) + (y2 * x4)) - (y4 * x2)),((((x1 * y4) + (x4 * y1)) + (x2 * y3)) - (x3 * y2))*] ) );
definition
let z be
Quaternion;
existence
( ( z in COMPLEX implies ex b1 being Number ex z9 being Complex st
( z = z9 & b1 = Re z9 ) ) & ( not z in COMPLEX implies ex b1 being Number ex f being Function of 4,REAL st
( z = f & b1 = f . 0 ) ) )
uniqueness
for b1, b2 being Number holds
( ( z in COMPLEX & ex z9 being Complex st
( z = z9 & b1 = Re z9 ) & ex z9 being Complex st
( z = z9 & b2 = Re z9 ) implies b1 = b2 ) & ( not z in COMPLEX & ex f being Function of 4,REAL st
( z = f & b1 = f . 0 ) & ex f being Function of 4,REAL st
( z = f & b2 = f . 0 ) implies b1 = b2 ) )
;
consistency
for b1 being Number holds verum
;
existence
( ( z in COMPLEX implies ex b1 being Number ex z9 being Complex st
( z = z9 & b1 = Im z9 ) ) & ( not z in COMPLEX implies ex b1 being Number ex f being Function of 4,REAL st
( z = f & b1 = f . 1 ) ) )
uniqueness
for b1, b2 being Number holds
( ( z in COMPLEX & ex z9 being Complex st
( z = z9 & b1 = Im z9 ) & ex z9 being Complex st
( z = z9 & b2 = Im z9 ) implies b1 = b2 ) & ( not z in COMPLEX & ex f being Function of 4,REAL st
( z = f & b1 = f . 1 ) & ex f being Function of 4,REAL st
( z = f & b2 = f . 1 ) implies b1 = b2 ) )
;
consistency
for b1 being Number holds verum
;
existence
( ( z in COMPLEX implies ex b1 being Number st b1 = 0 ) & ( not z in COMPLEX implies ex b1 being Number ex f being Function of 4,REAL st
( z = f & b1 = f . 2 ) ) )
uniqueness
for b1, b2 being Number holds
( ( z in COMPLEX & b1 = 0 & b2 = 0 implies b1 = b2 ) & ( not z in COMPLEX & ex f being Function of 4,REAL st
( z = f & b1 = f . 2 ) & ex f being Function of 4,REAL st
( z = f & b2 = f . 2 ) implies b1 = b2 ) )
;
consistency
for b1 being Number holds verum
;
existence
( ( z in COMPLEX implies ex b1 being Number st b1 = 0 ) & ( not z in COMPLEX implies ex b1 being Number ex f being Function of 4,REAL st
( z = f & b1 = f . 3 ) ) )
uniqueness
for b1, b2 being Number holds
( ( z in COMPLEX & b1 = 0 & b2 = 0 implies b1 = b2 ) & ( not z in COMPLEX & ex f being Function of 4,REAL st
( z = f & b1 = f . 3 ) & ex f being Function of 4,REAL st
( z = f & b2 = f . 3 ) implies b1 = b2 ) )
;
consistency
for b1 being Number holds verum
;
end;
theorem Th15:
for
f being
Function of 4,
REAL ex
a,
b,
c,
d being
Real st
f = (
0,1,2,3)
--> (
a,
b,
c,
d)
Lm7:
for a, b being Element of REAL holds
( Re [*a,b*] = a & Im [*a,b*] = b )
Lm8:
for z being Complex holds [*(Re z),(Im z)*] = z
theorem Th16:
for
a,
b,
c,
d being
Real holds
(
Rea [*a,b,c,d*] = a &
Im1 [*a,b,c,d*] = b &
Im2 [*a,b,c,d*] = c &
Im3 [*a,b,c,d*] = d )
Lm9:
for a, b, c, d being Real st (((a ^2) + (b ^2)) + (c ^2)) + (d ^2) = 0 holds
( a = 0 & b = 0 & c = 0 & d = 0 )
Lm10:
[*jj,zz,zz,zz*] = 1
Lm11:
for m, n, x, y, z being Quaternion st z = ((m + n) + x) + y holds
( Rea z = (((Rea m) + (Rea n)) + (Rea x)) + (Rea y) & Im1 z = (((Im1 m) + (Im1 n)) + (Im1 x)) + (Im1 y) & Im2 z = (((Im2 m) + (Im2 n)) + (Im2 x)) + (Im2 y) & Im3 z = (((Im3 m) + (Im3 n)) + (Im3 x)) + (Im3 y) )
Lm12:
for x, y, z being Quaternion st z = x + y holds
( Rea z = (Rea x) + (Rea y) & Im1 z = (Im1 x) + (Im1 y) & Im2 z = (Im2 x) + (Im2 y) & Im3 z = (Im3 x) + (Im3 y) )
Lm13:
for z1, z2 being Quaternion holds z1 + z2 = [*((Rea z1) + (Rea z2)),((Im1 z1) + (Im1 z2)),((Im2 z1) + (Im2 z2)),((Im3 z1) + (Im3 z2))*]
Lm14:
for x, y, z being Quaternion st z = x * y holds
( Rea z = ((((Rea x) * (Rea y)) - ((Im1 x) * (Im1 y))) - ((Im2 x) * (Im2 y))) - ((Im3 x) * (Im3 y)) & Im1 z = ((((Rea x) * (Im1 y)) + ((Im1 x) * (Rea y))) + ((Im2 x) * (Im3 y))) - ((Im3 x) * (Im2 y)) & Im2 z = ((((Rea x) * (Im2 y)) + ((Im2 x) * (Rea y))) + ((Im3 x) * (Im1 y))) - ((Im1 x) * (Im3 y)) & Im3 z = ((((Rea x) * (Im3 y)) + ((Im3 x) * (Rea y))) + ((Im1 x) * (Im2 y))) - ((Im2 x) * (Im1 y)) )
Lm15:
for z1, z2, z3, z4 being Quaternion holds ((z1 + z2) + z3) + z4 = [*((((Rea z1) + (Rea z2)) + (Rea z3)) + (Rea z4)),((((Im1 z1) + (Im1 z2)) + (Im1 z3)) + (Im1 z4)),((((Im2 z1) + (Im2 z2)) + (Im2 z3)) + (Im2 z4)),((((Im3 z1) + (Im3 z2)) + (Im3 z3)) + (Im3 z4))*]
Lm16:
for z1, z2 being Quaternion holds z1 * z2 = [*(((((Rea z1) * (Rea z2)) - ((Im1 z1) * (Im1 z2))) - ((Im2 z1) * (Im2 z2))) - ((Im3 z1) * (Im3 z2))),(((((Rea z1) * (Im1 z2)) + ((Im1 z1) * (Rea z2))) + ((Im2 z1) * (Im3 z2))) - ((Im3 z1) * (Im2 z2))),(((((Rea z1) * (Im2 z2)) + ((Im2 z1) * (Rea z2))) + ((Im3 z1) * (Im1 z2))) - ((Im1 z1) * (Im3 z2))),(((((Rea z1) * (Im3 z2)) + ((Im3 z1) * (Rea z2))) + ((Im1 z1) * (Im2 z2))) - ((Im2 z1) * (Im1 z2)))*]
Lm17:
for z1, z2 being Quaternion holds
( Rea (z1 * z2) = ((((Rea z1) * (Rea z2)) - ((Im1 z1) * (Im1 z2))) - ((Im2 z1) * (Im2 z2))) - ((Im3 z1) * (Im3 z2)) & Im1 (z1 * z2) = ((((Rea z1) * (Im1 z2)) + ((Im1 z1) * (Rea z2))) + ((Im2 z1) * (Im3 z2))) - ((Im3 z1) * (Im2 z2)) & Im2 (z1 * z2) = ((((Rea z1) * (Im2 z2)) + ((Im2 z1) * (Rea z2))) + ((Im3 z1) * (Im1 z2))) - ((Im1 z1) * (Im3 z2)) & Im3 (z1 * z2) = ((((Rea z1) * (Im3 z2)) + ((Im3 z1) * (Rea z2))) + ((Im1 z1) * (Im2 z2))) - ((Im2 z1) * (Im1 z2)) )
Lm18:
for z being Quaternion
for x being Real st z = x holds
( Rea z = x & Im1 z = 0 & Im2 z = 0 & Im3 z = 0 )
definition
let x be
Real;
let y be
Quaternion;
consider y1,
y2,
y3,
y4 being
Real such that A1:
y = [*y1,y2,y3,y4*]
by Th2;
existence
ex b1 being Number ex y1, y2, y3, y4 being Real st
( y = [*y1,y2,y3,y4*] & b1 = [*(x + y1),y2,y3,y4*] )
uniqueness
for b1, b2 being Number st ex y1, y2, y3, y4 being Real st
( y = [*y1,y2,y3,y4*] & b1 = [*(x + y1),y2,y3,y4*] ) & ex y1, y2, y3, y4 being Real st
( y = [*y1,y2,y3,y4*] & b2 = [*(x + y1),y2,y3,y4*] ) holds
b1 = b2
end;
definition
let x be
Real;
let y be
Quaternion;
consider y1,
y2,
y3,
y4 being
Real such that A1:
y = [*y1,y2,y3,y4*]
by Th2;
existence
ex b1 being Number ex y1, y2, y3, y4 being Real st
( y = [*y1,y2,y3,y4*] & b1 = [*(x * y1),(x * y2),(x * y3),(x * y4)*] )
uniqueness
for b1, b2 being Number st ex y1, y2, y3, y4 being Real st
( y = [*y1,y2,y3,y4*] & b1 = [*(x * y1),(x * y2),(x * y3),(x * y4)*] ) & ex y1, y2, y3, y4 being Real st
( y = [*y1,y2,y3,y4*] & b2 = [*(x * y1),(x * y2),(x * y3),(x * y4)*] ) holds
b1 = b2
end;
Lm19:
for x, y, z, w being Real holds [*x,y,z,w*] = ((x + (y * <i>)) + (z * <j>)) + (w * <k>)
Lm20:
for z1, z2 being Quaternion holds z1 + z2 = ((((Rea z1) + (Rea z2)) + (((Im1 z1) + (Im1 z2)) * <i>)) + (((Im2 z1) + (Im2 z2)) * <j>)) + (((Im3 z1) + (Im3 z2)) * <k>)
Lm21:
for z1, z2 being Quaternion holds z1 * z2 = (((((((Rea z1) * (Rea z2)) - ((Im1 z1) * (Im1 z2))) - ((Im2 z1) * (Im2 z2))) - ((Im3 z1) * (Im3 z2))) + ((((((Rea z1) * (Im1 z2)) + ((Im1 z1) * (Rea z2))) + ((Im2 z1) * (Im3 z2))) - ((Im3 z1) * (Im2 z2))) * <i>)) + ((((((Rea z1) * (Im2 z2)) + ((Im2 z1) * (Rea z2))) + ((Im3 z1) * (Im1 z2))) - ((Im1 z1) * (Im3 z2))) * <j>)) + ((((((Rea z1) * (Im3 z2)) + ((Im3 z1) * (Rea z2))) + ((Im1 z1) * (Im2 z2))) - ((Im2 z1) * (Im1 z2))) * <k>)
Lm22:
for c being Quaternion holds c + 0q = c
Lm23:
( 0 * <i> = 0 & 0 * <j> = 0 & 0 * <k> = 0 )
Lm24:
for z being Quaternion holds - z = (((- (Rea z)) + ((- (Im1 z)) * <i>)) + ((- (Im2 z)) * <j>)) + ((- (Im3 z)) * <k>)
Lm25:
for z1, z2 being Quaternion holds z1 - z2 = ((((Rea z1) - (Rea z2)) + (((Im1 z1) - (Im1 z2)) * <i>)) + (((Im2 z1) - (Im2 z2)) * <j>)) + (((Im3 z1) - (Im3 z2)) * <k>)
Lm26:
for a, b, c, d being Real holds a ^2 <= (((a ^2) + (b ^2)) + (c ^2)) + (d ^2)
Lm27:
for a, b, c, d being Real holds c ^2 <= (((a ^2) + (b ^2)) + (c ^2)) + (d ^2)
Lm28:
for a, b, c, d being Real holds d ^2 <= (((a ^2) + (b ^2)) + (c ^2)) + (d ^2)
Lm29:
for a, b being Real st a >= b ^2 holds
sqrt a >= b
Lm30:
for a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6 being Real st a1 >= b1 & a2 >= b2 & a3 >= b3 & a4 >= b4 & a5 >= b5 & a6 >= b6 holds
((((a1 + a2) + a3) + a4) + a5) + a6 >= ((((b1 + b2) + b3) + b4) + b5) + b6
Lm31:
for a, b being Real st a >= 0 & b >= 0 & a ^2 >= b ^2 holds
a >= b
Lm32:
for m1, m2, m4, m3, n1, n2, n3, n4 being Real holds ((sqrt ((((m1 ^2) + (m2 ^2)) + (m3 ^2)) + (m4 ^2))) + (sqrt ((((n1 ^2) + (n2 ^2)) + (n3 ^2)) + (n4 ^2)))) ^2 = ((((((((m1 ^2) + (m2 ^2)) + (m3 ^2)) + (m4 ^2)) + (n1 ^2)) + (n2 ^2)) + (n3 ^2)) + (n4 ^2)) + (2 * (sqrt (((((m1 ^2) + (m2 ^2)) + (m3 ^2)) + (m4 ^2)) * ((((n1 ^2) + (n2 ^2)) + (n3 ^2)) + (n4 ^2)))))
Lm33:
for m1, m2, m3, m4, n1, n2, n3, n4 being Real holds (sqrt (((((m1 + n1) ^2) + ((m2 + n2) ^2)) + ((m3 + n3) ^2)) + ((m4 + n4) ^2))) ^2 = ((((m1 + n1) ^2) + ((m2 + n2) ^2)) + ((m3 + n3) ^2)) + ((m4 + n4) ^2)
Lm34:
for z1, z2 being Quaternion holds z1 = (z1 + z2) - z2
Lm35:
for z1, z2 being Quaternion holds z1 = (z1 - z2) + z2
Lm36:
for z1, z2 being Quaternion holds z1 - z2 = [*((Rea z1) - (Rea z2)),((Im1 z1) - (Im1 z2)),((Im2 z1) - (Im2 z2)),((Im3 z1) - (Im3 z2))*]
Lm37:
for z1, z2 being Quaternion holds z1 - z2 = - (z2 - z1)
Lm38:
for z1, z2 being Quaternion st z1 - z2 = 0 holds
z1 = z2
Lm39:
for z, z1, z2 being Quaternion holds z1 - z2 = (z1 - z) + (z - z2)