theorem
for
a,
b,
c being
Real holds
( not
c / a < 0 or (
((- b) + (sqrt (delta (a,b,c)))) / (2 * a) > 0 &
((- b) - (sqrt (delta (a,b,c)))) / (2 * a) < 0 ) or (
((- b) + (sqrt (delta (a,b,c)))) / (2 * a) < 0 &
((- b) - (sqrt (delta (a,b,c)))) / (2 * a) > 0 ) )
theorem
for
x,
a,
b,
c being
Real for
n being
Element of
NAT st
a <> 0 &
n is
odd &
delta (
a,
b,
c)
>= 0 &
Polynom (
a,
b,
c,
(x |^ n))
= 0 & not
x = n -root (((- b) + (sqrt (delta (a,b,c)))) / (2 * a)) holds
x = n -root (((- b) - (sqrt (delta (a,b,c)))) / (2 * a))
theorem
for
x,
a,
b,
c being
Real for
n being
Element of
NAT st
a <> 0 &
b / a < 0 &
c / a > 0 &
n is
even &
n >= 1 &
delta (
a,
b,
c)
>= 0 &
Polynom (
a,
b,
c,
(x |^ n))
= 0 & not
x = n -root (((- b) + (sqrt (delta (a,b,c)))) / (2 * a)) & not
x = - (n -root (((- b) + (sqrt (delta (a,b,c)))) / (2 * a))) & not
x = n -root (((- b) - (sqrt (delta (a,b,c)))) / (2 * a)) holds
x = - (n -root (((- b) - (sqrt (delta (a,b,c)))) / (2 * a)))
::
deftheorem defines
Polynom POLYEQ_4:def 1 :
for a, b, c, d, e, f, x being Complex holds Polynom (a,b,c,d,e,f,x) = (((((a * (x |^ 5)) + (b * (x |^ 4))) + (c * (x |^ 3))) + (d * (x ^2))) + (e * x)) + f;
registration
let a,
b,
c,
d,
e,
f,
x be
Complex;
coherence
Polynom (a,b,c,d,e,f,x) is complex
;
end;
registration
let a,
b,
c,
d,
e,
f,
x be
Real;
coherence
Polynom (a,b,c,d,e,f,x) is real
;
end;
theorem
for
x,
a,
b,
c being
Real st
a <> 0 &
(((b ^2) + ((2 * a) * b)) + (5 * (a ^2))) - ((4 * a) * c) > 0 &
Polynom (
a,
b,
c,
c,
b,
a,
x)
= 0 holds
for
y1,
y2 being
Real st
y1 = ((a - b) + (sqrt ((((b ^2) + ((2 * a) * b)) + (5 * (a ^2))) - ((4 * a) * c)))) / (2 * a) &
y2 = ((a - b) - (sqrt ((((b ^2) + ((2 * a) * b)) + (5 * (a ^2))) - ((4 * a) * c)))) / (2 * a) & not
x = - 1 & not
x = (y1 + (sqrt (delta (1,(- y1),1)))) / 2 & not
x = (y2 + (sqrt (delta (1,(- y2),1)))) / 2 & not
x = (y1 - (sqrt (delta (1,(- y1),1)))) / 2 holds
x = (y2 - (sqrt (delta (1,(- y2),1)))) / 2
theorem
for
a,
b,
x being
Real st
a > 0 &
a <> 1 &
x > 0 &
log (
a,
x)
= 1 holds
x = a