LmPI:
0 < PI
by LEIBNIZ1:17;
Lm1:
for a, b being Real holds ].a,b.[ c= [.a,b.]
by XXREAL_1:25;
LmX:
for a being Real ex f being constant Function of NAT,REAL st
for x being Nat holds f . x = a
theorem Th2:
for
a,
b,
c,
d being
Real for
f being
PartFunc of
REAL,
REAL st
a <= b &
c <= d &
[.a,b.] c= dom f &
c in [.a,b.] &
d in [.a,b.] &
f | ['a,b'] is
continuous & ( for
t being
Real st
t in [.c,d.] holds
0 <= f . t ) holds
0 <= integral (
f,
c,
d)
theorem Th3:
for
a,
b,
c,
d being
Real for
f,
g being
PartFunc of
REAL,
REAL st
a <= b &
c <= d &
[.a,b.] c= dom f &
[.a,b.] c= dom g &
c in [.a,b.] &
d in [.a,b.] &
f | ['a,b'] is
continuous &
g | ['a,b'] is
continuous & ( for
t being
Real st
t in [.c,d.] holds
f . t <= g . t ) holds
integral (
f,
c,
d)
<= integral (
g,
c,
d)
theorem Th4:
for
a,
b,
c,
d,
e being
Real for
f being
PartFunc of
REAL,
REAL st
a <= b &
c <= d &
c in [.a,b.] &
d in [.a,b.] &
[.a,b.] c= dom f &
f | ['a,b'] is
continuous & ( for
t being
Real st
t in [.c,d.] holds
e <= f . t ) holds
e * (d - c) <= integral (
f,
c,
d)
theorem Th5:
for
a,
b,
c,
d,
e being
Real for
f being
PartFunc of
REAL,
REAL st
0 < e &
a <= b &
c < d &
c in [.a,b.] &
d in [.a,b.] &
[.a,b.] c= dom f &
f | ['a,b'] is
continuous & ( for
t being
Real st
t in [.a,b.] holds
0 <= f . t ) & ( for
t being
Real st
t in [.c,d.] holds
e <= f . t ) holds
(
0 < e * (d - c) &
e * (d - c) <= integral (
f,
a,
b) )
theorem Th6:
for
a,
b being
Real for
f being
PartFunc of
REAL,
REAL st
a <= b &
[.a,b.] c= dom f &
f | ['a,b'] is
continuous & ( for
t being
Real st
t in [.a,b.] holds
0 <= f . t ) & ex
t0 being
Real st
(
t0 in ].a,b.[ &
0 < f . t0 ) holds
ex
d,
c,
e being
Real st
(
0 < e &
c < d &
c in [.a,b.] &
d in [.a,b.] &
0 < e * (d - c) &
e * (d - c) <= integral (
f,
a,
b) )
Lm2:
for f being Real_Sequence
for K being Real
for N being Nat st f is convergent & ( for n being Nat st N <= n holds
K <= f . n ) holds
K <= lim f
Lm3:
for n being Nat holds
( 0 < 1 / (n + 1) & 1 / (n + 1) < PI - (1 / (n + 1)) & PI - (1 / (n + 1)) < PI & [.(1 / (n + 1)),(PI - (1 / (n + 1))).] c= ].0,PI.[ & ['(1 / (n + 1)),(PI - (1 / (n + 1)))'] = [.(1 / (n + 1)),(PI - (1 / (n + 1))).] )
Th12:
for Z being open Subset of REAL
for r being Real
for f being PartFunc of REAL,REAL st Z c= dom (r (#) f) & f is_differentiable_on Z holds
( r (#) f is_differentiable_on Z & (r (#) f) `| Z = r (#) (f `| Z) )
by FDIFF_2:19;
Th13:
for Z being open Subset of REAL
for f1, f2 being PartFunc of REAL,REAL st Z c= dom (f1 (#) f2) & f1 is_differentiable_on Z & f2 is_differentiable_on Z holds
( f1 (#) f2 is_differentiable_on Z & (f1 (#) f2) `| Z = ((f1 `| Z) (#) f2) + (f1 (#) (f2 `| Z)) )
by FDIFF_2:20;
Th16:
for f being PartFunc of REAL,REAL
for Z being Subset of REAL holds
( f | Z is_differentiable_on Z iff f is_differentiable_on Z )
by INTEGRA7:5;
Th17:
for f being PartFunc of REAL,REAL
for Z being Subset of REAL st f is_differentiable_on Z holds
(f | Z) `| Z = f `| Z
by FDIFF_2:16;
Lm5:
for a, b being Real holds a * b <= (1 / 2) * ((a ^2) + (b ^2))
Lm7:
for x, y being PartFunc of REAL,REAL
for t being Real holds (x (#) y) . t <= (1 / 2) * (((x (#) x) . t) + ((y (#) y) . t))
Lm10:
for x, y being PartFunc of REAL,REAL
for Z being open Subset of REAL
for a, b being Real st x is continuous & y is differentiable & y `| Z is continuous & a <= b & ['a,b'] c= Z & Z c= dom x & Z c= dom y holds
integral ((x (#) (y `| Z)),a,b) <= (1 / 2) * (integral (((x (#) x) + ((y `| Z) (#) (y `| Z))),a,b))
Lm11:
for x, y being PartFunc of REAL,REAL
for Z being open Subset of REAL
for a, b being Real st x is differentiable & y is differentiable & x `| Z is continuous & Z c= dom x & Z c= dom y & a <= b & ['a,b'] c= Z & ( for t being Real st t in Z holds
(((x `| Z) . t) ^2) + (((y `| Z) . t) ^2) = 1 ) holds
( integral ((y (#) (x `| Z)),a,b) <= (1 / 2) * (integral (((y (#) y) + ((x `| Z) (#) (x `| Z))),a,b)) & (y (#) y) + ((x `| Z) (#) (x `| Z)) = ((y (#) y) + (AffineMap (0,1))) - ((y `| Z) (#) (y `| Z)) & integral (((y (#) y) + ((x `| Z) (#) (x `| Z))),a,b) = integral ((((y (#) y) + (AffineMap (0,1))) - ((y `| Z) (#) (y `| Z))),a,b) )
Lm13:
for t being Real st t in ].(- PI),0.[ holds
sin . t < 0
Lm17:
for y being PartFunc of REAL,REAL
for Z being open Subset of REAL st ['0,PI'] c= Z & Z c= dom y & y is differentiable & y `| Z is continuous & y . 0 = 0 & y . PI = 0 holds
ex u being PartFunc of REAL,REAL st
( dom u = ['0,PI'] & u is_differentiable_on ].0,PI.[ & u `| ].0,PI.[ is continuous & u is continuous & y | ['0,PI'] = (u (#) sin) | ['0,PI'] & ( for t being Real st t in ].0,PI.[ holds
diff (y,t) = ((diff (u,t)) * (sin . t)) + ((u . t) * (cos . t)) ) )
Lm18:
for y, u being PartFunc of REAL,REAL
for Z being open Subset of REAL st y is differentiable & ['0,PI'] c= Z & Z c= dom y & u is_differentiable_on ].0,PI.[ & u `| ].0,PI.[ is continuous & dom u = ['0,PI'] & u is continuous & y | ['0,PI'] = (u (#) sin) | ['0,PI'] & ( for t being Real st t in ].0,PI.[ holds
diff (y,t) = ((diff (u,t)) * (sin . t)) + ((u . t) * (cos . t)) ) holds
for t being Real st t in ].0,PI.[ holds
(((y (#) y) + (AffineMap (0,1))) - ((y `| Z) (#) (y `| Z))) . t = (((((u . t) ^2) * (((sin . t) ^2) - ((cos . t) ^2))) - ((((2 * (u . t)) * (diff (u,t))) * (sin . t)) * (cos . t))) - (((diff (u,t)) ^2) * ((sin . t) ^2))) + 1
Lm19:
for y, u being PartFunc of REAL,REAL
for Z being open Subset of REAL st y is differentiable & ['0,PI'] c= Z & Z c= dom y & u is_differentiable_on ].0,PI.[ & u `| ].0,PI.[ is continuous & dom u = ['0,PI'] & u is continuous & y | ['0,PI'] = (u (#) sin) | ['0,PI'] & ( for t being Real st t in ].0,PI.[ holds
diff (y,t) = ((diff (u,t)) * (sin . t)) + ((u . t) * (cos . t)) ) holds
for t being Real st t in ].0,PI.[ holds
(((y (#) y) + (AffineMap (0,1))) - ((y `| Z) (#) (y `| Z))) . t = (1 - (((diff (u,t)) ^2) * ((sin . t) ^2))) - (diff ((((u (#) u) (#) sin) (#) cos),t))
Lm20:
for y, u being PartFunc of REAL,REAL
for Z0 being open Subset of REAL st y is differentiable & ['0,PI'] c= Z0 & Z0 c= dom y & y `| Z0 is continuous & u is_differentiable_on ].0,PI.[ & u `| ].0,PI.[ is continuous & dom u = ['0,PI'] & u is continuous & y | ['0,PI'] = (u (#) sin) | ['0,PI'] & ( for t being Real st t in ].0,PI.[ holds
diff (y,t) = ((diff (u,t)) * (sin . t)) + ((u . t) * (cos . t)) ) holds
for n being Nat holds integral ((((y (#) y) + (AffineMap (0,1))) - ((y `| Z0) (#) (y `| Z0))),(0 + (1 / (n + 1))),(PI - (1 / (n + 1)))) = ((integral (((AffineMap (0,1)) - ((((u `| ].0,PI.[) (#) (u `| ].0,PI.[)) (#) sin) (#) sin)),(0 + (1 / (n + 1))),(PI - (1 / (n + 1))))) - ((((u (#) u) (#) sin) (#) cos) . (PI - (1 / (n + 1))))) + ((((u (#) u) (#) sin) (#) cos) . (1 / (n + 1)))
Lm21:
for y, u being PartFunc of REAL,REAL
for Z0 being open Subset of REAL st y is differentiable & ['0,PI'] c= Z0 & Z0 c= dom y & y `| Z0 is continuous & u is_differentiable_on ].0,PI.[ & u `| ].0,PI.[ is continuous & dom u = ['0,PI'] & u is continuous & y | ['0,PI'] = (u (#) sin) | ['0,PI'] & ( for t being Real st t in ].0,PI.[ holds
diff (y,t) = ((diff (u,t)) * (sin . t)) + ((u . t) * (cos . t)) ) holds
ex F being Real_Sequence st
( ( for n being Nat holds F . n = integral (((AffineMap (0,1)) - ((((u `| ].0,PI.[) (#) (u `| ].0,PI.[)) (#) sin) (#) sin)),(1 / (n + 1)),(PI - (1 / (n + 1)))) ) & F is convergent & integral ((((y (#) y) + (AffineMap (0,1))) - ((y `| Z0) (#) (y `| Z0))),0,PI) = lim F )
theorem Th20:
for
x,
y being
PartFunc of
REAL,
REAL for
Z being
open Subset of
REAL st
x is
differentiable &
y is
differentiable &
['0,PI'] c= Z &
Z c= dom x &
Z c= dom y &
y `| Z is
continuous &
x `| Z is
continuous & ( for
t being
Real st
t in Z holds
(((x `| Z) . t) ^2) + (((y `| Z) . t) ^2) = 1 ) &
y . 0 = 0 &
y . PI = 0 holds
ex
u being
PartFunc of
REAL,
REAL ex
F being
Real_Sequence st
(
u is_differentiable_on ].0,PI.[ &
u `| ].0,PI.[ is
continuous &
dom u = ['0,PI'] &
u is
continuous &
y | ['0,PI'] = (u (#) sin) | ['0,PI'] & ( for
t being
Real st
t in ].0,PI.[ holds
diff (
y,
t)
= ((diff (u,t)) * (sin . t)) + ((u . t) * (cos . t)) ) & ( for
n being
Nat holds
F . n = integral (
((AffineMap (0,1)) - ((((u `| ].0,PI.[) (#) (u `| ].0,PI.[)) (#) sin) (#) sin)),
(1 / (n + 1)),
(PI - (1 / (n + 1)))) ) &
F is
convergent &
integral (
(y (#) (x `| Z)),
0,
PI)
<= (1 / 2) * (integral (((y (#) y) + ((x `| Z) (#) (x `| Z))),0,PI)) &
(y (#) y) + ((x `| Z) (#) (x `| Z)) = ((y (#) y) + (AffineMap (0,1))) - ((y `| Z) (#) (y `| Z)) &
integral (
((y (#) y) + ((x `| Z) (#) (x `| Z))),
0,
PI)
= integral (
(((y (#) y) + (AffineMap (0,1))) - ((y `| Z) (#) (y `| Z))),
0,
PI) &
integral (
(((y (#) y) + (AffineMap (0,1))) - ((y `| Z) (#) (y `| Z))),
0,
PI)
= lim F )
Lm23:
for x, y being PartFunc of REAL,REAL
for Z being open Subset of REAL st x is differentiable & y is differentiable & ['0,PI'] c= Z & Z c= dom x & Z c= dom y & y `| Z is continuous & x `| Z is continuous & ( for t being Real st t in Z holds
(((x `| Z) . t) ^2) + (((y `| Z) . t) ^2) = 1 ) & y . 0 = 0 & y . PI = 0 holds
ex u being PartFunc of REAL,REAL ex G being Real_Sequence st
( u is_differentiable_on ].0,PI.[ & u `| ].0,PI.[ is continuous & dom u = ['0,PI'] & u is continuous & y | ['0,PI'] = (u (#) sin) | ['0,PI'] & ( for t being Real st t in ].0,PI.[ holds
diff (y,t) = ((diff (u,t)) * (sin . t)) + ((u . t) * (cos . t)) ) & (((u `| ].0,PI.[) (#) (u `| ].0,PI.[)) (#) sin) (#) sin is continuous & dom ((((u `| ].0,PI.[) (#) (u `| ].0,PI.[)) (#) sin) (#) sin) = ].0,PI.[ & ( for n being Nat holds G . n = integral (((((u `| ].0,PI.[) (#) (u `| ].0,PI.[)) (#) sin) (#) sin),(1 / (n + 1)),(PI - (1 / (n + 1)))) ) & G is convergent & ( for n being Nat holds
( ['(1 / (n + 1)),(PI - (1 / (n + 1)))'] c= dom ((((u `| ].0,PI.[) (#) (u `| ].0,PI.[)) (#) sin) (#) sin) & ((((u `| ].0,PI.[) (#) (u `| ].0,PI.[)) (#) sin) (#) sin) | ['(1 / (n + 1)),(PI - (1 / (n + 1)))'] is continuous & ((((u `| ].0,PI.[) (#) (u `| ].0,PI.[)) (#) sin) (#) sin) | ['(1 / (n + 1)),(PI - (1 / (n + 1)))'] is bounded & (((u `| ].0,PI.[) (#) (u `| ].0,PI.[)) (#) sin) (#) sin is_integrable_on ['(1 / (n + 1)),(PI - (1 / (n + 1)))'] ) ) & ( for n being Nat holds
( 0 <= G . n & ((1 / 2) * PI) - (G . n) <= (1 / 2) * PI ) ) & integral ((y (#) (x `| Z)),0,PI) <= (1 / 2) * (integral (((y (#) y) + ((x `| Z) (#) (x `| Z))),0,PI)) & (y (#) y) + ((x `| Z) (#) (x `| Z)) = ((y (#) y) + (AffineMap (0,1))) - ((y `| Z) (#) (y `| Z)) & integral (((y (#) y) + ((x `| Z) (#) (x `| Z))),0,PI) = integral ((((y (#) y) + (AffineMap (0,1))) - ((y `| Z) (#) (y `| Z))),0,PI) & (1 / 2) * (integral ((((y (#) y) + (AffineMap (0,1))) - ((y `| Z) (#) (y `| Z))),0,PI)) = ((1 / 2) * PI) - ((1 / 2) * (lim G)) & 0 <= lim G & ((1 / 2) * PI) - ((1 / 2) * (lim G)) <= (1 / 2) * PI )
Lm24:
for x, y being PartFunc of REAL,REAL
for Z being open Subset of REAL
for G being Real_Sequence st integral ((y (#) (x `| Z)),0,PI) <= ((1 / 2) * PI) - ((1 / 2) * (lim G)) & 0 <= lim G & ((1 / 2) * PI) - ((1 / 2) * (lim G)) <= (1 / 2) * PI & integral ((y (#) (x `| Z)),0,PI) = (1 / 2) * PI holds
lim G = 0
Lm25:
for g being PartFunc of REAL,REAL
for G being Real_Sequence st g is continuous & dom g = ].0,PI.[ & ( for n being Nat holds
( G . n = integral (g,(1 / (n + 1)),(PI - (1 / (n + 1)))) & ( for n being Nat holds
( ['(1 / (n + 1)),(PI - (1 / (n + 1)))'] c= dom g & g | ['(1 / (n + 1)),(PI - (1 / (n + 1)))'] is continuous & g | ['(1 / (n + 1)),(PI - (1 / (n + 1)))'] is bounded & g is_integrable_on ['(1 / (n + 1)),(PI - (1 / (n + 1)))'] ) ) ) ) & ( for t being Real st t in ].0,PI.[ holds
0 <= g . t ) holds
for n, m being Nat st n <= m holds
G . n <= G . m
Lm26:
for x, y being PartFunc of REAL,REAL
for Z being open Subset of REAL
for u being PartFunc of REAL,REAL
for G being Real_Sequence st x is differentiable & y is differentiable & ['0,PI'] c= Z & Z c= dom x & Z c= dom y & y `| Z is continuous & x `| Z is continuous & ( for t being Real st t in Z holds
(((x `| Z) . t) ^2) + (((y `| Z) . t) ^2) = 1 ) & y . 0 = 0 & y . PI = 0 & u is_differentiable_on ].0,PI.[ & u `| ].0,PI.[ is continuous & dom u = ['0,PI'] & u is continuous & y | ['0,PI'] = (u (#) sin) | ['0,PI'] & ( for t being Real st t in ].0,PI.[ holds
diff (y,t) = ((diff (u,t)) * (sin . t)) + ((u . t) * (cos . t)) ) & (((u `| ].0,PI.[) (#) (u `| ].0,PI.[)) (#) sin) (#) sin is continuous & dom ((((u `| ].0,PI.[) (#) (u `| ].0,PI.[)) (#) sin) (#) sin) = ].0,PI.[ & ( for n being Nat holds G . n = integral (((((u `| ].0,PI.[) (#) (u `| ].0,PI.[)) (#) sin) (#) sin),(1 / (n + 1)),(PI - (1 / (n + 1)))) ) & G is convergent & ( for n being Nat holds
( ['(1 / (n + 1)),(PI - (1 / (n + 1)))'] c= dom ((((u `| ].0,PI.[) (#) (u `| ].0,PI.[)) (#) sin) (#) sin) & ((((u `| ].0,PI.[) (#) (u `| ].0,PI.[)) (#) sin) (#) sin) | ['(1 / (n + 1)),(PI - (1 / (n + 1)))'] is continuous & ((((u `| ].0,PI.[) (#) (u `| ].0,PI.[)) (#) sin) (#) sin) | ['(1 / (n + 1)),(PI - (1 / (n + 1)))'] is bounded & (((u `| ].0,PI.[) (#) (u `| ].0,PI.[)) (#) sin) (#) sin is_integrable_on ['(1 / (n + 1)),(PI - (1 / (n + 1)))'] ) ) & ( for n being Nat holds
( 0 <= G . n & ((1 / 2) * PI) - (G . n) <= (1 / 2) * PI ) ) & lim G = 0 holds
for t being Real st t in ].0,PI.[ holds
(u `| ].0,PI.[) . t = 0
Lm27:
for x, y being PartFunc of REAL,REAL
for Z being open Subset of REAL st x is differentiable & y is differentiable & ['0,PI'] c= Z & Z c= dom x & Z c= dom y & y `| Z is continuous & x `| Z is continuous & ( for t being Real st t in Z holds
(((x `| Z) . t) ^2) + (((y `| Z) . t) ^2) = 1 ) & y . 0 = 0 & y . PI = 0 holds
( integral ((y (#) (x `| Z)),0,PI) <= (1 / 2) * PI & ( not integral ((y (#) (x `| Z)),0,PI) = (1 / 2) * PI or for t being Real st t in [.0,PI.] holds
( y . t = sin . t & x . t = ((- (cos . t)) + (cos . 0)) + (x . 0) ) or for t being Real st t in [.0,PI.] holds
( y . t = - (sin . t) & x . t = ((cos . t) - (cos . 0)) + (x . 0) ) ) )
Lm28:
for x, y being PartFunc of REAL,REAL
for a, b being Real st a < b & [.a,b.] c= dom x & [.a,b.] c= dom y & x is continuous & y is continuous & ( for t being Real st t in ].a,b.[ holds
x . t = y . t ) holds
x | [.a,b.] = y | [.a,b.]
Lm29:
for x, y being PartFunc of REAL,REAL
for Z being open Subset of REAL st x is differentiable & y is differentiable & ['0,PI'] c= Z & Z c= dom x & Z c= dom y & y `| Z is continuous & x `| Z is continuous & ( for t being Real st t in Z holds
(((x `| Z) . t) ^2) + (((y `| Z) . t) ^2) = 1 ) & y . 0 = 0 & y . PI = 0 & ( for t being Real st t in [.0,PI.] holds
( y . t = sin . t & x . t = ((- (cos . t)) + (cos . 0)) + (x . 0) ) or for t being Real st t in [.0,PI.] holds
( y . t = - (sin . t) & x . t = ((cos . t) - (cos . 0)) + (x . 0) ) ) holds
integral ((y (#) (x `| Z)),0,PI) = (1 / 2) * PI
theorem
for
x,
y being
PartFunc of
REAL,
REAL for
Z being
open Subset of
REAL st
x is
differentiable &
y is
differentiable &
['0,PI'] c= Z &
Z c= dom x &
Z c= dom y &
x `| Z is
continuous &
y `| Z is
continuous & ( for
t being
Real st
t in Z holds
(((x `| Z) . t) ^2) + (((y `| Z) . t) ^2) = 1 ) &
y . 0 = 0 &
y . PI = 0 holds
(
integral (
(y (#) (x `| Z)),
0,
PI)
<= (1 / 2) * PI & ( not
integral (
(y (#) (x `| Z)),
0,
PI)
= (1 / 2) * PI or for
t being
Real st
t in [.0,PI.] holds
(
y . t = sin . t &
x . t = ((- (cos . t)) + (cos . 0)) + (x . 0) ) or for
t being
Real st
t in [.0,PI.] holds
(
y . t = - (sin . t) &
x . t = ((cos . t) - (cos . 0)) + (x . 0) ) ) & ( ( for
t being
Real st
t in [.0,PI.] holds
(
y . t = sin . t &
x . t = ((- (cos . t)) + (cos . 0)) + (x . 0) ) or for
t being
Real st
t in [.0,PI.] holds
(
y . t = - (sin . t) &
x . t = ((cos . t) - (cos . 0)) + (x . 0) ) ) implies
integral (
(y (#) (x `| Z)),
0,
PI)
= (1 / 2) * PI ) )
by Lm27, Lm29;
theorem Th22:
for
x,
y being
PartFunc of
REAL,
REAL st
x is
differentiable &
y is
differentiable &
['0,PI'] c= dom x &
['0,PI'] c= dom y &
x `| (dom x) is
continuous &
y `| (dom y) is
continuous & ( for
t being
Real st
t in (dom x) /\ (dom y) holds
((diff (x,t)) ^2) + ((diff (y,t)) ^2) = 1 ) &
y . 0 = 0 &
y . PI = 0 holds
(
integral (
(y (#) (x `| (dom x))),
0,
PI)
<= (1 / 2) * PI & ( not
integral (
(y (#) (x `| (dom x))),
0,
PI)
= (1 / 2) * PI or for
t being
Real st
t in [.0,PI.] holds
(
y . t = sin . t &
x . t = ((- (cos . t)) + (cos . 0)) + (x . 0) ) or for
t being
Real st
t in [.0,PI.] holds
(
y . t = - (sin . t) &
x . t = ((cos . t) - (cos . 0)) + (x . 0) ) ) & ( ( for
t being
Real st
t in [.0,PI.] holds
(
y . t = sin . t &
x . t = ((- (cos . t)) + (cos . 0)) + (x . 0) ) or for
t being
Real st
t in [.0,PI.] holds
(
y . t = - (sin . t) &
x . t = ((cos . t) - (cos . 0)) + (x . 0) ) ) implies
integral (
(y (#) (x `| (dom x))),
0,
PI)
= (1 / 2) * PI ) )
theorem
for
x,
y being
PartFunc of
REAL,
REAL for
L being
Real st
0 < L &
x is
differentiable &
y is
differentiable &
[.0,PI.] c= dom x &
[.0,PI.] c= dom y &
x `| (dom x) is
continuous &
y `| (dom y) is
continuous & ( for
t being
Real st
t in (dom x) /\ (dom y) holds
((diff (x,t)) ^2) + ((diff (y,t)) ^2) = L / PI ) &
y . 0 = 0 &
y . PI = 0 holds
(
integral (
(y (#) (x `| (dom x))),
0,
PI)
<= (1 / 2) * L & ( not
integral (
(y (#) (x `| (dom x))),
0,
PI)
= (1 / 2) * L or for
t being
Real st
t in [.0,PI.] holds
(
y . t = (sin . t) / (sqrt (PI / L)) &
x . t = ((- ((cos . t) / (sqrt (PI / L)))) + ((cos . 0) / (sqrt (PI / L)))) + (x . 0) ) or for
t being
Real st
t in [.0,PI.] holds
(
y . t = - ((sin . t) / (sqrt (PI / L))) &
x . t = (((cos . t) / (sqrt (PI / L))) - ((cos . 0) / (sqrt (PI / L)))) + (x . 0) ) ) & ( ( for
t being
Real st
t in [.0,PI.] holds
(
y . t = (sin . t) / (sqrt (PI / L)) &
x . t = ((- ((cos . t) / (sqrt (PI / L)))) + ((cos . 0) / (sqrt (PI / L)))) + (x . 0) ) or for
t being
Real st
t in [.0,PI.] holds
(
y . t = - ((sin . t) / (sqrt (PI / L))) &
x . t = (((cos . t) / (sqrt (PI / L))) - ((cos . 0) / (sqrt (PI / L)))) + (x . 0) ) ) implies
integral (
(y (#) (x `| (dom x))),
0,
PI)
= (1 / 2) * L ) )