theorem Th4:
for
V being
RealLinearSpace for
OAS being
OAffinSpace st
OAS = OASpace V holds
for
a,
b,
c,
d being
Element of
OAS for
u,
v,
w,
y being
VECTOR of
V st
a = u &
b = v &
c = w &
d = y holds
(
a,
b '||' c,
d iff
u,
v '||' w,
y )
definition
let AS be
AffinSpace;
redefine attr AS is
Fanoian means
for
a,
b,
c,
d being
Element of
AS st
a,
b // c,
d &
a,
c // b,
d &
a,
d // b,
c holds
a,
b // a,
c;
compatibility
( AS is Fanoian iff for a, b, c, d being Element of AS st a,b // c,d & a,c // b,d & a,d // b,c holds
a,b // a,c )
end;
::
deftheorem defines
Fanoian PAPDESAF:def 1 :
for AS being AffinSpace holds
( AS is Fanoian iff for a, b, c, d being Element of AS st a,b // c,d & a,c // b,d & a,d // b,c holds
a,b // a,c );
definition
let OAS be
OAffinSpace;
attr OAS is
satisfying_DES means
for
o,
a,
b,
c,
a1,
b1,
c1 being
Element of
OAS st
o,
a // o,
a1 &
o,
b // o,
b1 &
o,
c // o,
c1 & not
o,
a,
b are_collinear & not
o,
a,
c are_collinear &
a,
b // a1,
b1 &
a,
c // a1,
c1 holds
b,
c // b1,
c1;
end;
::
deftheorem defines
satisfying_DES PAPDESAF:def 6 :
for OAS being OAffinSpace holds
( OAS is satisfying_DES iff for o, a, b, c, a1, b1, c1 being Element of OAS st o,a // o,a1 & o,b // o,b1 & o,c // o,c1 & not o,a,b are_collinear & not o,a,c are_collinear & a,b // a1,b1 & a,c // a1,c1 holds
b,c // b1,c1 );
definition
let OAS be
OAffinSpace;
attr OAS is
satisfying_DES_1 means
for
o,
a,
b,
c,
a1,
b1,
c1 being
Element of
OAS st
a,
o // o,
a1 &
b,
o // o,
b1 &
c,
o // o,
c1 & not
o,
a,
b are_collinear & not
o,
a,
c are_collinear &
a,
b // b1,
a1 &
a,
c // c1,
a1 holds
b,
c // c1,
b1;
end;
::
deftheorem defines
satisfying_DES_1 PAPDESAF:def 7 :
for OAS being OAffinSpace holds
( OAS is satisfying_DES_1 iff for o, a, b, c, a1, b1, c1 being Element of OAS st a,o // o,a1 & b,o // o,b1 & c,o // o,c1 & not o,a,b are_collinear & not o,a,c are_collinear & a,b // b1,a1 & a,c // c1,a1 holds
b,c // c1,b1 );
theorem Th7:
for
OAS being
OAffinSpace for
o,
a,
b,
a9,
b9 being
Element of
OAS st not
o,
a,
b are_collinear &
a,
o // o,
a9 &
o,
b,
b9 are_collinear &
a,
b '||' a9,
b9 holds
(
b,
o // o,
b9 &
a,
b // b9,
a9 )
theorem Th8:
for
OAS being
OAffinSpace for
o,
a,
b,
a9,
b9 being
Element of
OAS st not
o,
a,
b are_collinear &
o,
a // o,
a9 &
o,
b,
b9 are_collinear &
a,
b '||' a9,
b9 holds
(
o,
b // o,
b9 &
a,
b // a9,
b9 )
theorem Th10:
for
V being
RealLinearSpace for
o,
u,
v,
u1,
v1 being
VECTOR of
V for
r being
Real st
o - u = r * (u1 - o) &
r <> 0 &
o,
v '||' o,
v1 & not
o,
u '||' o,
v &
u,
v '||' u1,
v1 holds
(
v1 = u1 + (((- r) ") * (v - u)) &
v1 = o + (((- r) ") * (v - o)) &
v - u = (- r) * (v1 - u1) )
Lm1:
for V being RealLinearSpace
for u, v, w being VECTOR of V st u <> v & w <> v & u,v // v,w holds
ex r being Real st
( v - u = r * (w - v) & 0 < r )
Lm2:
for V being RealLinearSpace
for y, u, v being VECTOR of V st y,u '||' y,v & y <> u & y <> v holds
ex r being Real st
( u - y = r * (v - y) & r <> 0 )
Lm3:
for V being RealLinearSpace
for u, v, y being VECTOR of V holds (u - y) - (v - y) = u - v