theorem
for
a,
b,
c,
d being
set holds
id {a,b,c,d} = {[a,a],[b,b],[c,c],[d,d]}
theorem Th3:
for
a,
b,
c,
d,
e,
f,
g,
h being
set holds
[:{a,b,c,d},{e,f,g,h}:] = {[a,e],[a,f],[b,e],[b,f],[a,g],[a,h],[b,g],[b,h]} \/ {[c,e],[c,f],[d,e],[d,f],[c,g],[c,h],[d,g],[d,h]}
theorem Th11:
the
InternalRel of
(ComplRelStr (Necklace 4)) = {[0,2],[2,0],[0,3],[3,0],[1,3],[3,1]}
Lm1:
for X being non empty finite set
for A, B being non empty set st X = A \/ B & A misses B holds
card A in Segm (card X)
theorem Th38:
for
G being non
empty symmetric irreflexive RelStr for
a,
b,
c,
d being
Element of
G for
Z being
Subset of
G st
Z = {a,b,c,d} &
a,
b,
c,
d are_mutually_distinct &
[a,b] in the
InternalRel of
G &
[b,c] in the
InternalRel of
G &
[c,d] in the
InternalRel of
G & not
[a,c] in the
InternalRel of
G & not
[a,d] in the
InternalRel of
G & not
[b,d] in the
InternalRel of
G holds
subrelstr Z embeds Necklace 4