defpred S1[ set ] means verum;
theorem Th3:
for
A,
B,
C,
D,
E,
X being
set st (
X c= A or
X c= B or
X c= C or
X c= D or
X c= E ) holds
X c= (((A \/ B) \/ C) \/ D) \/ E
theorem Th4:
for
A,
B,
C,
D,
E,
x being
set holds
(
x in (((A \/ B) \/ C) \/ D) \/ E iff (
x in A or
x in B or
x in C or
x in D or
x in E ) )
definition
let n be
Nat;
let R be
NatRelStr of
n;
existence
ex b1 being NatRelStr of (2 * n) + 1 st the InternalRel of b1 = ((( the InternalRel of R \/ { [x,(y + n)] where x, y is Element of NAT : [x,y] in the InternalRel of R } ) \/ { [(x + n),y] where x, y is Element of NAT : [x,y] in the InternalRel of R } ) \/ [:{(2 * n)},((2 * n) \ n):]) \/ [:((2 * n) \ n),{(2 * n)}:]
uniqueness
for b1, b2 being NatRelStr of (2 * n) + 1 st the InternalRel of b1 = ((( the InternalRel of R \/ { [x,(y + n)] where x, y is Element of NAT : [x,y] in the InternalRel of R } ) \/ { [(x + n),y] where x, y is Element of NAT : [x,y] in the InternalRel of R } ) \/ [:{(2 * n)},((2 * n) \ n):]) \/ [:((2 * n) \ n),{(2 * n)}:] & the InternalRel of b2 = ((( the InternalRel of R \/ { [x,(y + n)] where x, y is Element of NAT : [x,y] in the InternalRel of R } ) \/ { [(x + n),y] where x, y is Element of NAT : [x,y] in the InternalRel of R } ) \/ [:{(2 * n)},((2 * n) \ n):]) \/ [:((2 * n) \ n),{(2 * n)}:] holds
b1 = b2
end;
:: article with preliminaries where RelStr represents a graph.
:: But then some stuff from NECKLACE would have to be moved.
:: I decided not to move stuff around until there is much more
:: material and then a bigger reorganisation would be in place
:: 2009.08.06