Lm1:
for X being Banach_Algebra
for z being Element of X
for n being Nat holds
( z * (z #N n) = z #N (n + 1) & (z #N n) * z = z #N (n + 1) & z * (z #N n) = (z #N n) * z )
Lm2:
for X being Banach_Algebra
for n being Nat
for z, w being Element of X st z,w are_commutative holds
( w * (z #N n) = (z #N n) * w & z * (w #N n) = (w #N n) * z )
theorem Th13:
( ( for
k being
Nat st
0 < k holds
((k -' 1) !) * k = k ! ) & ( for
m,
k being
Nat st
k <= m holds
((m -' k) !) * ((m + 1) - k) = ((m + 1) -' k) ! ) )
Lm3:
for X being Banach_Algebra
for z, w being Element of X st z,w are_commutative holds
(Sum (z rExpSeq)) * (Sum (w rExpSeq)) = Sum ((z + w) rExpSeq)