Lm1:
for r, g being Real st 0 < g holds
( r - g < r & r < r + g )
Lm2:
for f1, f2 being PartFunc of REAL,REAL
for s being Real_Sequence st rng s c= dom (f2 * f1) holds
( rng s c= dom f1 & rng (f1 /* s) c= dom f2 )
theorem
for
x0 being
Real for
f1,
f2 being
PartFunc of
REAL,
REAL st
f1 is_convergent_in x0 &
f2 is_left_convergent_in lim (
f1,
x0) & ( for
r1,
r2 being
Real st
r1 < x0 &
x0 < r2 holds
ex
g1,
g2 being
Real st
(
r1 < g1 &
g1 < x0 &
g1 in dom (f2 * f1) &
g2 < r2 &
x0 < g2 &
g2 in dom (f2 * f1) ) ) & ex
g being
Real st
(
0 < g & ( for
r being
Real st
r in (dom f1) /\ (].(x0 - g),x0.[ \/ ].x0,(x0 + g).[) holds
f1 . r < lim (
f1,
x0) ) ) holds
(
f2 * f1 is_convergent_in x0 &
lim (
(f2 * f1),
x0)
= lim_left (
f2,
(lim (f1,x0))) )
theorem
for
x0 being
Real for
f1,
f2 being
PartFunc of
REAL,
REAL st
f1 is_convergent_in x0 &
f2 is_right_convergent_in lim (
f1,
x0) & ( for
r1,
r2 being
Real st
r1 < x0 &
x0 < r2 holds
ex
g1,
g2 being
Real st
(
r1 < g1 &
g1 < x0 &
g1 in dom (f2 * f1) &
g2 < r2 &
x0 < g2 &
g2 in dom (f2 * f1) ) ) & ex
g being
Real st
(
0 < g & ( for
r being
Real st
r in (dom f1) /\ (].(x0 - g),x0.[ \/ ].x0,(x0 + g).[) holds
lim (
f1,
x0)
< f1 . r ) ) holds
(
f2 * f1 is_convergent_in x0 &
lim (
(f2 * f1),
x0)
= lim_right (
f2,
(lim (f1,x0))) )
theorem
for
x0 being
Real for
f1,
f2 being
PartFunc of
REAL,
REAL st
f1 is_convergent_in x0 &
f2 is_convergent_in lim (
f1,
x0) & ( for
r1,
r2 being
Real st
r1 < x0 &
x0 < r2 holds
ex
g1,
g2 being
Real st
(
r1 < g1 &
g1 < x0 &
g1 in dom (f2 * f1) &
g2 < r2 &
x0 < g2 &
g2 in dom (f2 * f1) ) ) & ex
g being
Real st
(
0 < g & ( for
r being
Real st
r in (dom f1) /\ (].(x0 - g),x0.[ \/ ].x0,(x0 + g).[) holds
f1 . r <> lim (
f1,
x0) ) ) holds
(
f2 * f1 is_convergent_in x0 &
lim (
(f2 * f1),
x0)
= lim (
f2,
(lim (f1,x0))) )