theorem
for
f,
g being
PartFunc of
REAL,
REAL for
x0 being
Real st
x0 in (dom f) /\ (dom g) & ex
r being
Real st
(
r > 0 &
[.x0,(x0 + r).] c= dom f &
[.x0,(x0 + r).] c= dom g &
f is_differentiable_on ].x0,(x0 + r).[ &
g is_differentiable_on ].x0,(x0 + r).[ &
].x0,(x0 + r).[ c= dom (f / g) &
[.x0,(x0 + r).] c= dom ((f `| ].x0,(x0 + r).[) / (g `| ].x0,(x0 + r).[)) &
f . x0 = 0 &
g . x0 = 0 &
f is_continuous_in x0 &
g is_continuous_in x0 &
(f `| ].x0,(x0 + r).[) / (g `| ].x0,(x0 + r).[) is_right_convergent_in x0 ) holds
(
f / g is_right_convergent_in x0 & ex
r being
Real st
(
r > 0 &
lim_right (
(f / g),
x0)
= lim_right (
((f `| ].x0,(x0 + r).[) / (g `| ].x0,(x0 + r).[)),
x0) ) )
theorem
for
f,
g being
PartFunc of
REAL,
REAL for
x0 being
Real st
x0 in (dom f) /\ (dom g) & ex
r being
Real st
(
r > 0 &
[.(x0 - r),x0.] c= dom f &
[.(x0 - r),x0.] c= dom g &
f is_differentiable_on ].(x0 - r),x0.[ &
g is_differentiable_on ].(x0 - r),x0.[ &
].(x0 - r),x0.[ c= dom (f / g) &
[.(x0 - r),x0.] c= dom ((f `| ].(x0 - r),x0.[) / (g `| ].(x0 - r),x0.[)) &
f . x0 = 0 &
g . x0 = 0 &
f is_continuous_in x0 &
g is_continuous_in x0 &
(f `| ].(x0 - r),x0.[) / (g `| ].(x0 - r),x0.[) is_left_convergent_in x0 ) holds
(
f / g is_left_convergent_in x0 & ex
r being
Real st
(
r > 0 &
lim_left (
(f / g),
x0)
= lim_left (
((f `| ].(x0 - r),x0.[) / (g `| ].(x0 - r),x0.[)),
x0) ) )