Lm1:
for T being 1-sorted
for A, B being Subset-Family of T holds A \/ B is Subset-Family of T
;
definition
let T be non
empty TopSpace;
let A be
Subset of
T;
func Kurat14Set A -> Subset-Family of
T equals
{A,(A -),((A -) `),(((A -) `) -),((((A -) `) -) `),(((((A -) `) -) `) -),((((((A -) `) -) `) -) `)} \/ {(A `),((A `) -),(((A `) -) `),((((A `) -) `) -),(((((A `) -) `) -) `),((((((A `) -) `) -) `) -),(((((((A `) -) `) -) `) -) `)};
coherence
{A,(A -),((A -) `),(((A -) `) -),((((A -) `) -) `),(((((A -) `) -) `) -),((((((A -) `) -) `) -) `)} \/ {(A `),((A `) -),(((A `) -) `),((((A `) -) `) -),(((((A `) -) `) -) `),((((((A `) -) `) -) `) -),(((((((A `) -) `) -) `) -) `)} is Subset-Family of T
end;
::
deftheorem defines
Kurat14Set KURATO_1:def 2 :
for T being non empty TopSpace
for A being Subset of T holds Kurat14Set A = {A,(A -),((A -) `),(((A -) `) -),((((A -) `) -) `),(((((A -) `) -) `) -),((((((A -) `) -) `) -) `)} \/ {(A `),((A `) -),(((A `) -) `),((((A `) -) `) -),(((((A `) -) `) -) `),((((((A `) -) `) -) `) -),(((((((A `) -) `) -) `) -) `)};
definition
let T be non
empty TopSpace;
let A be
Subset of
T;
coherence
{(A -),(((A -) `) -),(((((A -) `) -) `) -),((A `) -),((((A `) -) `) -),((((((A `) -) `) -) `) -)} is Subset-Family of T
coherence
{((A -) `),((((A -) `) -) `),((((((A -) `) -) `) -) `),(((A `) -) `),(((((A `) -) `) -) `),(((((((A `) -) `) -) `) -) `)} is Subset-Family of T
end;
Lm2:
for T being non empty TopSpace
for A being Subset of T holds Kurat14Set A = ({(Cl A),(Cl ((Cl A) `)),(Cl ((Cl ((Cl A) `)) `)),(Cl (A `)),(Cl ((Cl (A `)) `)),(Cl ((Cl ((Cl (A `)) `)) `))} \/ {A,(A `)}) \/ {((Cl A) `),((Cl ((Cl A) `)) `),((Cl ((Cl ((Cl A) `)) `)) `),((Cl (A `)) `),((Cl ((Cl (A `)) `)) `),((Cl ((Cl ((Cl (A `)) `)) `)) `)}