Lm1:
dom (- (exp_R * (AffineMap ((- 1),0)))) = [#] REAL
by FUNCT_2:def 1;
reconsider jj = 1 as Element of REAL by XREAL_0:def 1;
Lm2:
for x being Real holds
( - sin is_differentiable_in x & diff ((- sin),x) = - (cos . x) )
theorem Th31:
for
f,
g being
PartFunc of
REAL,
REAL for
A being non
empty closed_interval Subset of
REAL st
(f (#) f) || A is
total &
(f (#) g) || A is
total &
(g (#) g) || A is
total &
((f (#) f) || A) | A is
bounded &
((f (#) g) || A) | A is
bounded &
((g (#) g) || A) | A is
bounded &
f (#) f is_integrable_on A &
f (#) g is_integrable_on A &
g (#) g is_integrable_on A holds
|||((f + g),(f + g),A)||| = (|||(f,f,A)||| + (2 * |||(f,g,A)|||)) + |||(g,g,A)|||