Lm1:
for f being PartFunc of REAL,REAL
for a, b, c being Real st a < b & b < c & ['a,c'] c= dom f & f | ['a,b'] is bounded & f | ['b,c'] is bounded & f is_integrable_on ['a,b'] & f is_integrable_on ['b,c'] holds
f is_integrable_on ['a,c']
theorem Th1:
for
f being
PartFunc of
REAL,
REAL for
a,
b,
c being
Real st
a <= b &
b <= c &
['a,c'] c= dom f &
f | ['a,b'] is
bounded &
f | ['b,c'] is
bounded &
f is_integrable_on ['a,b'] &
f is_integrable_on ['b,c'] holds
(
f is_integrable_on ['a,c'] &
integral (
f,
a,
c)
= (integral (f,a,b)) + (integral (f,b,c)) )
Lm2:
for r, g, r1 being Real st 0 < g & r <= r1 holds
( r - g < r1 & r < r1 + g )
theorem Th18:
for
f being
PartFunc of
REAL,
REAL for
a,
b being
Real st
a < b &
['a,b'] c= dom f &
f is_integrable_on ['a,b'] &
f | ['a,b'] is
bounded holds
(
f is_left_ext_Riemann_integrable_on a,
b &
ext_left_integral (
f,
a,
b)
= integral (
f,
a,
b) )
theorem Th19:
for
f being
PartFunc of
REAL,
REAL for
a,
b being
Real st
a < b &
['a,b'] c= dom f &
f is_integrable_on ['a,b'] &
f | ['a,b'] is
bounded holds
(
f is_right_ext_Riemann_integrable_on a,
b &
ext_right_integral (
f,
a,
b)
= integral (
f,
a,
b) )
theorem Th20:
for
f being
PartFunc of
REAL,
REAL for
a,
b,
c being
Real st
a < b &
b <= c &
].a,c.] c= dom f &
f | ['b,c'] is
bounded &
f is_integrable_on ['b,c'] &
f is_left_ext_Riemann_integrable_on a,
b holds
(
f is_left_ext_Riemann_integrable_on a,
c &
ext_left_integral (
f,
a,
c)
= (ext_left_integral (f,a,b)) + (integral (f,b,c)) )
theorem Th21:
for
f being
PartFunc of
REAL,
REAL for
a,
b,
c being
Real st
a <= b &
b < c &
[.a,c.[ c= dom f &
f | ['a,b'] is
bounded &
f is_integrable_on ['a,b'] &
f is_right_ext_Riemann_integrable_on b,
c holds
(
f is_right_ext_Riemann_integrable_on a,
c &
ext_right_integral (
f,
a,
c)
= (integral (f,a,b)) + (ext_right_integral (f,b,c)) )
Lm3:
for f being PartFunc of REAL,REAL
for a, b being Real st a < b & ['a,b'] c= dom f & f is_integrable_on ['a,b'] & f | ['a,b'] is bounded holds
( f is_left_ext_Riemann_integrable_on a,b & ext_left_integral (f,a,b) = integral (f,a,b) )
Lm4:
for f being PartFunc of REAL,REAL
for a, b being Real st ].a,b.] c= dom f & f is_left_ext_Riemann_integrable_on a,b holds
for c being Real st a <= c & c < b holds
f is_left_ext_Riemann_integrable_on c,b
theorem Th22:
for
f being
PartFunc of
REAL,
REAL for
a,
b being
Real st
].a,b.] c= dom f &
f is_left_ext_Riemann_integrable_on a,
b holds
for
d being
Real st
a < d &
d <= b holds
(
f is_left_ext_Riemann_integrable_on a,
d &
ext_left_integral (
f,
a,
b)
= (ext_left_integral (f,a,d)) + (integral (f,d,b)) )
theorem
for
f being
PartFunc of
REAL,
REAL for
a,
b being
Real st
].a,b.] c= dom f &
f is_left_ext_Riemann_integrable_on a,
b holds
for
c,
d being
Real st
a <= c &
c < d &
d <= b holds
(
f is_left_ext_Riemann_integrable_on c,
d & (
a < c implies
ext_left_integral (
f,
c,
d)
= integral (
f,
c,
d) ) )
theorem
for
f being
PartFunc of
REAL,
REAL for
a,
b being
Real st
].a,b.] c= dom f &
f is_left_ext_Riemann_integrable_on a,
b holds
for
c,
d being
Real st
a < c &
c < d &
d <= b holds
(
f is_right_ext_Riemann_integrable_on c,
d &
ext_right_integral (
f,
c,
d)
= integral (
f,
c,
d) )
Lm5:
for f being PartFunc of REAL,REAL
for a, b being Real st a < b & ['a,b'] c= dom f & f is_integrable_on ['a,b'] & f | ['a,b'] is bounded holds
( f is_right_ext_Riemann_integrable_on a,b & ext_right_integral (f,a,b) = integral (f,a,b) )
Lm6:
for f being PartFunc of REAL,REAL
for a, b being Real st [.a,b.[ c= dom f & f is_right_ext_Riemann_integrable_on a,b holds
for d being Real st a < d & d <= b holds
f is_right_ext_Riemann_integrable_on a,d
theorem Th25:
for
f being
PartFunc of
REAL,
REAL for
a,
b being
Real st
[.a,b.[ c= dom f &
f is_right_ext_Riemann_integrable_on a,
b holds
for
c being
Real st
a <= c &
c < b holds
(
f is_right_ext_Riemann_integrable_on c,
b &
ext_right_integral (
f,
a,
b)
= (integral (f,a,c)) + (ext_right_integral (f,c,b)) )
theorem
for
f being
PartFunc of
REAL,
REAL for
a,
b being
Real st
[.a,b.[ c= dom f &
f is_right_ext_Riemann_integrable_on a,
b holds
for
c,
d being
Real st
a <= c &
c < d &
d <= b holds
(
f is_right_ext_Riemann_integrable_on c,
d & (
d < b implies
ext_right_integral (
f,
c,
d)
= integral (
f,
c,
d) ) )
theorem
for
f being
PartFunc of
REAL,
REAL for
a,
b being
Real st
[.a,b.[ c= dom f &
f is_right_ext_Riemann_integrable_on a,
b holds
for
c,
d being
Real st
a <= c &
c < d &
d < b holds
(
f is_left_ext_Riemann_integrable_on c,
d &
ext_left_integral (
f,
c,
d)
= integral (
f,
c,
d) )
theorem Th28:
for
f,
g being
PartFunc of
REAL,
REAL for
a,
b being
Real st
a < b &
].a,b.] c= dom f &
].a,b.] c= dom g &
f is_left_ext_Riemann_integrable_on a,
b &
g is_left_ext_Riemann_integrable_on a,
b holds
(
f + g is_left_ext_Riemann_integrable_on a,
b &
ext_left_integral (
(f + g),
a,
b)
= (ext_left_integral (f,a,b)) + (ext_left_integral (g,a,b)) )
theorem Th29:
for
f,
g being
PartFunc of
REAL,
REAL for
a,
b being
Real st
a < b &
[.a,b.[ c= dom f &
[.a,b.[ c= dom g &
f is_right_ext_Riemann_integrable_on a,
b &
g is_right_ext_Riemann_integrable_on a,
b holds
(
f + g is_right_ext_Riemann_integrable_on a,
b &
ext_right_integral (
(f + g),
a,
b)
= (ext_right_integral (f,a,b)) + (ext_right_integral (g,a,b)) )
definition
let f be
PartFunc of
REAL,
REAL;
let a,
b be
Real;
assume A1:
f is_left_improper_integrable_on a,
b
;
existence
ex b1 being ExtReal ex Intf being PartFunc of REAL,REAL st
( dom Intf = ].a,b.] & ( for x being Real st x in dom Intf holds
Intf . x = integral (f,x,b) ) & ( ( Intf is_right_convergent_in a & b1 = lim_right (Intf,a) ) or ( Intf is_right_divergent_to+infty_in a & b1 = +infty ) or ( Intf is_right_divergent_to-infty_in a & b1 = -infty ) ) )
uniqueness
for b1, b2 being ExtReal st ex Intf being PartFunc of REAL,REAL st
( dom Intf = ].a,b.] & ( for x being Real st x in dom Intf holds
Intf . x = integral (f,x,b) ) & ( ( Intf is_right_convergent_in a & b1 = lim_right (Intf,a) ) or ( Intf is_right_divergent_to+infty_in a & b1 = +infty ) or ( Intf is_right_divergent_to-infty_in a & b1 = -infty ) ) ) & ex Intf being PartFunc of REAL,REAL st
( dom Intf = ].a,b.] & ( for x being Real st x in dom Intf holds
Intf . x = integral (f,x,b) ) & ( ( Intf is_right_convergent_in a & b2 = lim_right (Intf,a) ) or ( Intf is_right_divergent_to+infty_in a & b2 = +infty ) or ( Intf is_right_divergent_to-infty_in a & b2 = -infty ) ) ) holds
b1 = b2
end;
::
deftheorem Def3 defines
left_improper_integral INTEGR24:def 3 :
for f being PartFunc of REAL,REAL
for a, b being Real st f is_left_improper_integrable_on a,b holds
for b4 being ExtReal holds
( b4 = left_improper_integral (f,a,b) iff ex Intf being PartFunc of REAL,REAL st
( dom Intf = ].a,b.] & ( for x being Real st x in dom Intf holds
Intf . x = integral (f,x,b) ) & ( ( Intf is_right_convergent_in a & b4 = lim_right (Intf,a) ) or ( Intf is_right_divergent_to+infty_in a & b4 = +infty ) or ( Intf is_right_divergent_to-infty_in a & b4 = -infty ) ) ) );
definition
let f be
PartFunc of
REAL,
REAL;
let a,
b be
Real;
assume A1:
f is_right_improper_integrable_on a,
b
;
existence
ex b1 being ExtReal ex Intf being PartFunc of REAL,REAL st
( dom Intf = [.a,b.[ & ( for x being Real st x in dom Intf holds
Intf . x = integral (f,a,x) ) & ( ( Intf is_left_convergent_in b & b1 = lim_left (Intf,b) ) or ( Intf is_left_divergent_to+infty_in b & b1 = +infty ) or ( Intf is_left_divergent_to-infty_in b & b1 = -infty ) ) )
uniqueness
for b1, b2 being ExtReal st ex Intf being PartFunc of REAL,REAL st
( dom Intf = [.a,b.[ & ( for x being Real st x in dom Intf holds
Intf . x = integral (f,a,x) ) & ( ( Intf is_left_convergent_in b & b1 = lim_left (Intf,b) ) or ( Intf is_left_divergent_to+infty_in b & b1 = +infty ) or ( Intf is_left_divergent_to-infty_in b & b1 = -infty ) ) ) & ex Intf being PartFunc of REAL,REAL st
( dom Intf = [.a,b.[ & ( for x being Real st x in dom Intf holds
Intf . x = integral (f,a,x) ) & ( ( Intf is_left_convergent_in b & b2 = lim_left (Intf,b) ) or ( Intf is_left_divergent_to+infty_in b & b2 = +infty ) or ( Intf is_left_divergent_to-infty_in b & b2 = -infty ) ) ) holds
b1 = b2
end;
::
deftheorem Def4 defines
right_improper_integral INTEGR24:def 4 :
for f being PartFunc of REAL,REAL
for a, b being Real st f is_right_improper_integrable_on a,b holds
for b4 being ExtReal holds
( b4 = right_improper_integral (f,a,b) iff ex Intf being PartFunc of REAL,REAL st
( dom Intf = [.a,b.[ & ( for x being Real st x in dom Intf holds
Intf . x = integral (f,a,x) ) & ( ( Intf is_left_convergent_in b & b4 = lim_left (Intf,b) ) or ( Intf is_left_divergent_to+infty_in b & b4 = +infty ) or ( Intf is_left_divergent_to-infty_in b & b4 = -infty ) ) ) );
theorem Th34:
for
f being
PartFunc of
REAL,
REAL for
a,
b being
Real holds
( not
f is_left_improper_integrable_on a,
b or (
f is_left_ext_Riemann_integrable_on a,
b &
left_improper_integral (
f,
a,
b)
= ext_left_integral (
f,
a,
b) ) or ( not
f is_left_ext_Riemann_integrable_on a,
b &
left_improper_integral (
f,
a,
b)
= +infty ) or ( not
f is_left_ext_Riemann_integrable_on a,
b &
left_improper_integral (
f,
a,
b)
= -infty ) )
theorem
for
f,
Intf being
PartFunc of
REAL,
REAL for
a,
b being
Real st
f is_left_improper_integrable_on a,
b &
dom Intf = ].a,b.] & ( for
x being
Real st
x in dom Intf holds
Intf . x = integral (
f,
x,
b) ) &
Intf is_right_convergent_in a holds
left_improper_integral (
f,
a,
b)
= lim_right (
Intf,
a)
Lm7:
for f being PartFunc of REAL,REAL
for a, c being Real st ].a,c.] c= dom f & f is_left_improper_integrable_on a,c holds
for b being Real st a < b & b <= c holds
for d being Real st a < d & d <= b holds
( f is_integrable_on ['d,b'] & f | ['d,b'] is bounded )
Lm8:
for f being PartFunc of REAL,REAL
for a, c being Real st ].a,c.] c= dom f & f is_left_improper_integrable_on a,c & left_improper_integral (f,a,c) = ext_left_integral (f,a,c) holds
for b being Real st a < b & b <= c holds
( f is_left_improper_integrable_on a,b & left_improper_integral (f,a,b) = ext_left_integral (f,a,b) )
Lm9:
for f being PartFunc of REAL,REAL
for a, c being Real st ].a,c.] c= dom f & f is_left_improper_integrable_on a,c & left_improper_integral (f,a,c) = +infty holds
for b being Real st a < b & b <= c holds
( f is_left_improper_integrable_on a,b & left_improper_integral (f,a,b) = +infty )
Lm10:
for f being PartFunc of REAL,REAL
for a, c being Real st ].a,c.] c= dom f & f is_left_improper_integrable_on a,c & left_improper_integral (f,a,c) = -infty holds
for b being Real st a < b & b <= c holds
( f is_left_improper_integrable_on a,b & left_improper_integral (f,a,b) = -infty )
theorem Th37:
for
f being
PartFunc of
REAL,
REAL for
a,
b,
c being
Real st
a < b &
b <= c &
].a,c.] c= dom f &
f is_left_improper_integrable_on a,
c holds
(
f is_left_improper_integrable_on a,
b & (
left_improper_integral (
f,
a,
c)
= ext_left_integral (
f,
a,
c) implies
left_improper_integral (
f,
a,
b)
= ext_left_integral (
f,
a,
b) ) & (
left_improper_integral (
f,
a,
c)
= +infty implies
left_improper_integral (
f,
a,
b)
= +infty ) & (
left_improper_integral (
f,
a,
c)
= -infty implies
left_improper_integral (
f,
a,
b)
= -infty ) )
Lm11:
for f being PartFunc of REAL,REAL
for a, b, c being Real st a < b & b <= c & ].a,c.] c= dom f & f | ['b,c'] is bounded & f is_left_improper_integrable_on a,b & f is_integrable_on ['b,c'] holds
for d being Real st a < d & d <= c holds
( f is_integrable_on ['d,c'] & f | ['d,c'] is bounded )
Lm12:
for f being PartFunc of REAL,REAL
for a, b, c being Real st a < b & b <= c & ].a,c.] c= dom f & f | ['b,c'] is bounded & f is_left_improper_integrable_on a,b & f is_integrable_on ['b,c'] & left_improper_integral (f,a,b) = ext_left_integral (f,a,b) holds
( f is_left_improper_integrable_on a,c & left_improper_integral (f,a,c) = (left_improper_integral (f,a,b)) + (integral (f,b,c)) )
Lm13:
for f being PartFunc of REAL,REAL
for a, b, c being Real st a < b & b <= c & ].a,c.] c= dom f & f | ['b,c'] is bounded & f is_left_improper_integrable_on a,b & f is_integrable_on ['b,c'] & left_improper_integral (f,a,b) = +infty holds
( f is_left_improper_integrable_on a,c & left_improper_integral (f,a,c) = +infty )
Lm14:
for f being PartFunc of REAL,REAL
for a, b, c being Real st a < b & b <= c & ].a,c.] c= dom f & f | ['b,c'] is bounded & f is_left_improper_integrable_on a,b & f is_integrable_on ['b,c'] & left_improper_integral (f,a,b) = -infty holds
( f is_left_improper_integrable_on a,c & left_improper_integral (f,a,c) = -infty )
theorem Th38:
for
f being
PartFunc of
REAL,
REAL for
a,
b,
c being
Real st
a < b &
b <= c &
].a,c.] c= dom f &
f | ['b,c'] is
bounded &
f is_left_improper_integrable_on a,
b &
f is_integrable_on ['b,c'] holds
(
f is_left_improper_integrable_on a,
c & (
left_improper_integral (
f,
a,
b)
= ext_left_integral (
f,
a,
b) implies
left_improper_integral (
f,
a,
c)
= (left_improper_integral (f,a,b)) + (integral (f,b,c)) ) & (
left_improper_integral (
f,
a,
b)
= +infty implies
left_improper_integral (
f,
a,
c)
= +infty ) & (
left_improper_integral (
f,
a,
b)
= -infty implies
left_improper_integral (
f,
a,
c)
= -infty ) )
theorem Th39:
for
f being
PartFunc of
REAL,
REAL for
a,
b being
Real holds
( not
f is_right_improper_integrable_on a,
b or (
f is_right_ext_Riemann_integrable_on a,
b &
right_improper_integral (
f,
a,
b)
= ext_right_integral (
f,
a,
b) ) or ( not
f is_right_ext_Riemann_integrable_on a,
b &
right_improper_integral (
f,
a,
b)
= +infty ) or ( not
f is_right_ext_Riemann_integrable_on a,
b &
right_improper_integral (
f,
a,
b)
= -infty ) )
theorem
for
f,
Intf being
PartFunc of
REAL,
REAL for
a,
b being
Real st
f is_right_improper_integrable_on a,
b &
dom Intf = [.a,b.[ & ( for
x being
Real st
x in dom Intf holds
Intf . x = integral (
f,
a,
x) ) &
Intf is_left_convergent_in b holds
right_improper_integral (
f,
a,
b)
= lim_left (
Intf,
b)
Lm15:
for f being PartFunc of REAL,REAL
for a, c being Real st [.a,c.[ c= dom f & f is_right_improper_integrable_on a,c holds
for b being Real st a <= b & b < c holds
for d being Real st b <= d & d < c holds
( f is_integrable_on ['b,d'] & f | ['b,d'] is bounded )
Lm16:
for f being PartFunc of REAL,REAL
for a, c being Real st [.a,c.[ c= dom f & f is_right_improper_integrable_on a,c & right_improper_integral (f,a,c) = ext_right_integral (f,a,c) holds
for b being Real st a <= b & b < c holds
( f is_right_improper_integrable_on b,c & right_improper_integral (f,b,c) = ext_right_integral (f,b,c) )
Lm17:
for f being PartFunc of REAL,REAL
for a, c being Real st [.a,c.[ c= dom f & f is_right_improper_integrable_on a,c & right_improper_integral (f,a,c) = +infty holds
for b being Real st a <= b & b < c holds
( f is_right_improper_integrable_on b,c & right_improper_integral (f,b,c) = +infty )
Lm18:
for f being PartFunc of REAL,REAL
for a, c being Real st [.a,c.[ c= dom f & f is_right_improper_integrable_on a,c & right_improper_integral (f,a,c) = -infty holds
for b being Real st a <= b & b < c holds
( f is_right_improper_integrable_on b,c & right_improper_integral (f,b,c) = -infty )
theorem Th42:
for
f being
PartFunc of
REAL,
REAL for
a,
b,
c being
Real st
a <= b &
b < c &
[.a,c.[ c= dom f &
f is_right_improper_integrable_on a,
c holds
(
f is_right_improper_integrable_on b,
c & (
right_improper_integral (
f,
a,
c)
= ext_right_integral (
f,
a,
c) implies
right_improper_integral (
f,
b,
c)
= ext_right_integral (
f,
b,
c) ) & (
right_improper_integral (
f,
a,
c)
= +infty implies
right_improper_integral (
f,
b,
c)
= +infty ) & (
right_improper_integral (
f,
a,
c)
= -infty implies
right_improper_integral (
f,
b,
c)
= -infty ) )
Lm19:
for f being PartFunc of REAL,REAL
for a, b, c being Real st a <= b & b < c & [.a,c.[ c= dom f & f | ['a,b'] is bounded & f is_right_improper_integrable_on b,c & f is_integrable_on ['a,b'] holds
for d being Real st a <= d & d < c holds
( f is_integrable_on ['a,d'] & f | ['a,d'] is bounded )
Lm20:
for f being PartFunc of REAL,REAL
for a, b, c being Real st a <= b & b < c & [.a,c.[ c= dom f & f | ['a,b'] is bounded & f is_right_improper_integrable_on b,c & f is_integrable_on ['a,b'] & right_improper_integral (f,b,c) = ext_right_integral (f,b,c) holds
( f is_right_improper_integrable_on a,c & right_improper_integral (f,a,c) = (right_improper_integral (f,b,c)) + (integral (f,a,b)) )
Lm21:
for f being PartFunc of REAL,REAL
for a, b, c being Real st a <= b & b < c & [.a,c.[ c= dom f & f | ['a,b'] is bounded & f is_right_improper_integrable_on b,c & f is_integrable_on ['a,b'] & right_improper_integral (f,b,c) = +infty holds
( f is_right_improper_integrable_on a,c & right_improper_integral (f,a,c) = +infty )
Lm22:
for f being PartFunc of REAL,REAL
for a, b, c being Real st a <= b & b < c & [.a,c.[ c= dom f & f | ['a,b'] is bounded & f is_right_improper_integrable_on b,c & f is_integrable_on ['a,b'] & right_improper_integral (f,b,c) = -infty holds
( f is_right_improper_integrable_on a,c & right_improper_integral (f,a,c) = -infty )
theorem Th43:
for
f being
PartFunc of
REAL,
REAL for
a,
b,
c being
Real st
a <= b &
b < c &
[.a,c.[ c= dom f &
f | ['a,b'] is
bounded &
f is_right_improper_integrable_on b,
c &
f is_integrable_on ['a,b'] holds
(
f is_right_improper_integrable_on a,
c & (
right_improper_integral (
f,
b,
c)
= ext_right_integral (
f,
b,
c) implies
right_improper_integral (
f,
a,
c)
= (right_improper_integral (f,b,c)) + (integral (f,a,b)) ) & (
right_improper_integral (
f,
b,
c)
= +infty implies
right_improper_integral (
f,
a,
c)
= +infty ) & (
right_improper_integral (
f,
b,
c)
= -infty implies
right_improper_integral (
f,
a,
c)
= -infty ) )
definition
let f be
PartFunc of
REAL,
REAL;
let a,
c be
Real;
pred f is_improper_integrable_on a,
c means
ex
b being
Real st
(
a < b &
b < c &
f is_left_improper_integrable_on a,
b &
f is_right_improper_integrable_on b,
c & ( not
left_improper_integral (
f,
a,
b)
= -infty or not
right_improper_integral (
f,
b,
c)
= +infty ) & ( not
left_improper_integral (
f,
a,
b)
= +infty or not
right_improper_integral (
f,
b,
c)
= -infty ) );
end;
::
deftheorem defines
is_improper_integrable_on INTEGR24:def 5 :
for f being PartFunc of REAL,REAL
for a, c being Real holds
( f is_improper_integrable_on a,c iff ex b being Real st
( a < b & b < c & f is_left_improper_integrable_on a,b & f is_right_improper_integrable_on b,c & ( not left_improper_integral (f,a,b) = -infty or not right_improper_integral (f,b,c) = +infty ) & ( not left_improper_integral (f,a,b) = +infty or not right_improper_integral (f,b,c) = -infty ) ) );
theorem
for
f being
PartFunc of
REAL,
REAL for
a,
c being
Real st
f is_improper_integrable_on a,
c holds
ex
b being
Real st
(
a < b &
b < c & ( (
left_improper_integral (
f,
a,
b)
= ext_left_integral (
f,
a,
b) &
right_improper_integral (
f,
b,
c)
= ext_right_integral (
f,
b,
c) ) or
(left_improper_integral (f,a,b)) + (right_improper_integral (f,b,c)) = +infty or
(left_improper_integral (f,a,b)) + (right_improper_integral (f,b,c)) = -infty ) )
theorem Th45:
for
f being
PartFunc of
REAL,
REAL for
a,
b,
c being
Real st
].a,c.[ c= dom f &
a < b &
b < c &
f is_left_improper_integrable_on a,
b &
f is_right_improper_integrable_on b,
c & ( not
left_improper_integral (
f,
a,
b)
= -infty or not
right_improper_integral (
f,
b,
c)
= +infty ) & ( not
left_improper_integral (
f,
a,
b)
= +infty or not
right_improper_integral (
f,
b,
c)
= -infty ) holds
for
b1 being
Real st
a < b1 &
b1 <= b holds
(left_improper_integral (f,a,b)) + (right_improper_integral (f,b,c)) = (left_improper_integral (f,a,b1)) + (right_improper_integral (f,b1,c))
theorem Th46:
for
f being
PartFunc of
REAL,
REAL for
a,
b,
c being
Real st
].a,c.[ c= dom f &
a < b &
b < c &
f is_left_improper_integrable_on a,
b &
f is_right_improper_integrable_on b,
c & ( not
left_improper_integral (
f,
a,
b)
= -infty or not
right_improper_integral (
f,
b,
c)
= +infty ) & ( not
left_improper_integral (
f,
a,
b)
= +infty or not
right_improper_integral (
f,
b,
c)
= -infty ) holds
for
b2 being
Real st
b <= b2 &
b2 < c holds
(left_improper_integral (f,a,b)) + (right_improper_integral (f,b,c)) = (left_improper_integral (f,a,b2)) + (right_improper_integral (f,b2,c))
theorem Th47:
for
f being
PartFunc of
REAL,
REAL for
a,
c being
Real st
].a,c.[ c= dom f &
f is_improper_integrable_on a,
c holds
for
b1,
b2 being
Real st
a < b1 &
b1 < c &
a < b2 &
b2 < c holds
(left_improper_integral (f,a,b1)) + (right_improper_integral (f,b1,c)) = (left_improper_integral (f,a,b2)) + (right_improper_integral (f,b2,c))
definition
let f be
PartFunc of
REAL,
REAL;
let a,
b be
Real;
assume A1:
(
].a,b.[ c= dom f &
f is_improper_integrable_on a,
b )
;
existence
ex b1 being ExtReal ex c being Real st
( a < c & c < b & f is_left_improper_integrable_on a,c & f is_right_improper_integrable_on c,b & b1 = (left_improper_integral (f,a,c)) + (right_improper_integral (f,c,b)) )
uniqueness
for b1, b2 being ExtReal st ex c being Real st
( a < c & c < b & f is_left_improper_integrable_on a,c & f is_right_improper_integrable_on c,b & b1 = (left_improper_integral (f,a,c)) + (right_improper_integral (f,c,b)) ) & ex c being Real st
( a < c & c < b & f is_left_improper_integrable_on a,c & f is_right_improper_integrable_on c,b & b2 = (left_improper_integral (f,a,c)) + (right_improper_integral (f,c,b)) ) holds
b1 = b2
by A1, Th47;
end;
::
deftheorem Def6 defines
improper_integral INTEGR24:def 6 :
for f being PartFunc of REAL,REAL
for a, b being Real st ].a,b.[ c= dom f & f is_improper_integrable_on a,b holds
for b4 being ExtReal holds
( b4 = improper_integral (f,a,b) iff ex c being Real st
( a < c & c < b & f is_left_improper_integrable_on a,c & f is_right_improper_integrable_on c,b & b4 = (left_improper_integral (f,a,c)) + (right_improper_integral (f,c,b)) ) );
theorem Th48:
for
f being
PartFunc of
REAL,
REAL for
a,
c being
Real st
].a,c.[ c= dom f &
f is_improper_integrable_on a,
c holds
for
b being
Real st
a < b &
b < c holds
(
f is_left_improper_integrable_on a,
b &
f is_right_improper_integrable_on b,
c &
improper_integral (
f,
a,
c)
= (left_improper_integral (f,a,b)) + (right_improper_integral (f,b,c)) )
theorem Th53:
for
f being
PartFunc of
REAL,
REAL for
a,
b,
r being
Real st
a < b &
].a,b.] c= dom f &
f is_left_improper_integrable_on a,
b holds
(
r (#) f is_left_improper_integrable_on a,
b &
left_improper_integral (
(r (#) f),
a,
b)
= r * (left_improper_integral (f,a,b)) )
theorem Th54:
for
f being
PartFunc of
REAL,
REAL for
a,
b,
r being
Real st
a < b &
[.a,b.[ c= dom f &
f is_right_improper_integrable_on a,
b holds
(
r (#) f is_right_improper_integrable_on a,
b &
right_improper_integral (
(r (#) f),
a,
b)
= r * (right_improper_integral (f,a,b)) )
theorem Th57:
for
f,
g being
PartFunc of
REAL,
REAL for
a,
b being
Real st
a < b &
].a,b.] c= dom f &
].a,b.] c= dom g &
f is_left_improper_integrable_on a,
b &
g is_left_improper_integrable_on a,
b & ( not
left_improper_integral (
f,
a,
b)
= +infty or not
left_improper_integral (
g,
a,
b)
= -infty ) & ( not
left_improper_integral (
f,
a,
b)
= -infty or not
left_improper_integral (
g,
a,
b)
= +infty ) holds
(
f + g is_left_improper_integrable_on a,
b &
left_improper_integral (
(f + g),
a,
b)
= (left_improper_integral (f,a,b)) + (left_improper_integral (g,a,b)) )
theorem Th58:
for
f,
g being
PartFunc of
REAL,
REAL for
a,
b being
Real st
a < b &
[.a,b.[ c= dom f &
[.a,b.[ c= dom g &
f is_right_improper_integrable_on a,
b &
g is_right_improper_integrable_on a,
b & ( not
right_improper_integral (
f,
a,
b)
= +infty or not
right_improper_integral (
g,
a,
b)
= -infty ) & ( not
right_improper_integral (
f,
a,
b)
= -infty or not
right_improper_integral (
g,
a,
b)
= +infty ) holds
(
f + g is_right_improper_integrable_on a,
b &
right_improper_integral (
(f + g),
a,
b)
= (right_improper_integral (f,a,b)) + (right_improper_integral (g,a,b)) )
theorem
for
f,
g being
PartFunc of
REAL,
REAL for
a,
b being
Real st
a < b &
].a,b.] c= dom f &
].a,b.] c= dom g &
f is_left_improper_integrable_on a,
b &
g is_left_improper_integrable_on a,
b & ( not
left_improper_integral (
f,
a,
b)
= +infty or not
left_improper_integral (
g,
a,
b)
= +infty ) & ( not
left_improper_integral (
f,
a,
b)
= -infty or not
left_improper_integral (
g,
a,
b)
= -infty ) holds
(
f - g is_left_improper_integrable_on a,
b &
left_improper_integral (
(f - g),
a,
b)
= (left_improper_integral (f,a,b)) - (left_improper_integral (g,a,b)) )
theorem
for
f,
g being
PartFunc of
REAL,
REAL for
a,
b being
Real st
a < b &
[.a,b.[ c= dom f &
[.a,b.[ c= dom g &
f is_right_improper_integrable_on a,
b &
g is_right_improper_integrable_on a,
b & ( not
right_improper_integral (
f,
a,
b)
= +infty or not
right_improper_integral (
g,
a,
b)
= +infty ) & ( not
right_improper_integral (
f,
a,
b)
= -infty or not
right_improper_integral (
g,
a,
b)
= -infty ) holds
(
f - g is_right_improper_integrable_on a,
b &
right_improper_integral (
(f - g),
a,
b)
= (right_improper_integral (f,a,b)) - (right_improper_integral (g,a,b)) )
theorem Th61:
for
f being
PartFunc of
REAL,
REAL for
a,
b,
r being
Real st
].a,b.[ c= dom f &
f is_improper_integrable_on a,
b holds
(
r (#) f is_improper_integrable_on a,
b &
improper_integral (
(r (#) f),
a,
b)
= r * (improper_integral (f,a,b)) )
theorem Th62:
for
f being
PartFunc of
REAL,
REAL for
a,
b,
r being
Real st
].a,b.[ c= dom f &
f is_improper_integrable_on a,
b holds
(
- f is_improper_integrable_on a,
b &
improper_integral (
(- f),
a,
b)
= - (improper_integral (f,a,b)) )
theorem Th63:
for
f,
g being
PartFunc of
REAL,
REAL for
a,
b being
Real st
].a,b.[ c= dom f &
].a,b.[ c= dom g &
f is_improper_integrable_on a,
b &
g is_improper_integrable_on a,
b & ( not
improper_integral (
f,
a,
b)
= +infty or not
improper_integral (
g,
a,
b)
= -infty ) & ( not
improper_integral (
f,
a,
b)
= -infty or not
improper_integral (
g,
a,
b)
= +infty ) holds
(
f + g is_improper_integrable_on a,
b &
improper_integral (
(f + g),
a,
b)
= (improper_integral (f,a,b)) + (improper_integral (g,a,b)) )
theorem
for
f,
g being
PartFunc of
REAL,
REAL for
a,
b being
Real st
].a,b.[ c= dom f &
].a,b.[ c= dom g &
f is_improper_integrable_on a,
b &
g is_improper_integrable_on a,
b & ( not
improper_integral (
f,
a,
b)
= +infty or not
improper_integral (
g,
a,
b)
= +infty ) & ( not
improper_integral (
f,
a,
b)
= -infty or not
improper_integral (
g,
a,
b)
= -infty ) holds
(
f - g is_improper_integrable_on a,
b &
improper_integral (
(f - g),
a,
b)
= (improper_integral (f,a,b)) - (improper_integral (g,a,b)) )