Lm1:
for A being non empty closed_interval Subset of REAL
for f being Function of A,REAL
for D being Division of A
for F being middle_volume of f,D
for i being Nat st f | A is bounded_below & i in dom D holds
(lower_volume (f,D)) . i <= F . i
Lm2:
for A being non empty closed_interval Subset of REAL
for f being Function of A,REAL
for D being Division of A
for e being Real st f | A is bounded_below & 0 < e holds
ex F being middle_volume of f,D st
for i being Nat st i in dom D holds
( (lower_volume (f,D)) . i <= F . i & F . i < ((lower_volume (f,D)) . i) + e )
Lm3:
for A being non empty closed_interval Subset of REAL
for f being Function of A,REAL
for D being Division of A
for e being Real st f | A is bounded_above & 0 < e holds
ex F being middle_volume of f,D st
for i being Nat st i in dom D holds
( F . i <= (upper_volume (f,D)) . i & ((upper_volume (f,D)) . i) - e < F . i )
Lm4:
for A being non empty closed_interval Subset of REAL
for f being Function of A,REAL
for D being Division of A
for F being middle_volume of f,D
for i being Nat st f | A is bounded_above & i in dom D holds
F . i <= (upper_volume (f,D)) . i
Lm5:
for p, q, r being Real_Sequence st p is convergent & r is convergent & lim p = lim r & ( for i being Element of NAT holds p . i <= q . i ) & ( for i being Element of NAT holds q . i <= r . i ) holds
( q is convergent & lim p = lim q & lim r = lim q )
Lm6:
for n, i being Element of NAT
for f being PartFunc of REAL,(REAL n)
for i being Element of NAT
for A being Subset of REAL holds (proj (i,n)) * (f | A) = ((proj (i,n)) * f) | A
definition
let a,
b be
Real;
let n be
Element of
NAT ;
let f be
PartFunc of
REAL,
(REAL n);
existence
ex b1 being Element of REAL n st
( dom b1 = Seg n & ( for i being Element of NAT st i in Seg n holds
b1 . i = integral (((proj (i,n)) * f),a,b) ) )
uniqueness
for b1, b2 being Element of REAL n st dom b1 = Seg n & ( for i being Element of NAT st i in Seg n holds
b1 . i = integral (((proj (i,n)) * f),a,b) ) & dom b2 = Seg n & ( for i being Element of NAT st i in Seg n holds
b2 . i = integral (((proj (i,n)) * f),a,b) ) holds
b1 = b2
end;