:: Go-Board Theorem
:: by Jaros{\l}aw Kotowicz and Yatsuka Nakamura
::
:: Received August 24, 1992
:: Copyright (c) 1992-2021 Association of Mizar Users
theorem
Th1
:
:: GOBOARD4:1
for
G
being
Go-board
for
f1
,
f2
being
FinSequence
of
(
TOP-REAL
2
)
st 1
<=
len
f1
& 1
<=
len
f2
&
f1
is_sequence_on
G
&
f2
is_sequence_on
G
&
f1
/.
1
in
rng
(
Line
(
G
,1)
)
&
f1
/.
(
len
f1
)
in
rng
(
Line
(
G
,
(
len
G
)
)
)
&
f2
/.
1
in
rng
(
Col
(
G
,1)
)
&
f2
/.
(
len
f2
)
in
rng
(
Col
(
G
,
(
width
G
)
)
)
holds
rng
f1
meets
rng
f2
proof
end;
theorem
Th2
:
:: GOBOARD4:2
for
G
being
Go-board
for
f1
,
f2
being
FinSequence
of
(
TOP-REAL
2
)
st 2
<=
len
f1
& 2
<=
len
f2
&
f1
is_sequence_on
G
&
f2
is_sequence_on
G
&
f1
/.
1
in
rng
(
Line
(
G
,1)
)
&
f1
/.
(
len
f1
)
in
rng
(
Line
(
G
,
(
len
G
)
)
)
&
f2
/.
1
in
rng
(
Col
(
G
,1)
)
&
f2
/.
(
len
f2
)
in
rng
(
Col
(
G
,
(
width
G
)
)
)
holds
L~
f1
meets
L~
f2
proof
end;
theorem
:: GOBOARD4:3
for
G
being
Go-board
for
f1
,
f2
being
FinSequence
of
(
TOP-REAL
2
)
st 2
<=
len
f1
& 2
<=
len
f2
&
f1
is_sequence_on
G
&
f2
is_sequence_on
G
&
f1
/.
1
in
rng
(
Line
(
G
,1)
)
&
f1
/.
(
len
f1
)
in
rng
(
Line
(
G
,
(
len
G
)
)
)
&
f2
/.
1
in
rng
(
Col
(
G
,1)
)
&
f2
/.
(
len
f2
)
in
rng
(
Col
(
G
,
(
width
G
)
)
)
holds
L~
f1
meets
L~
f2
by
Th2
;
definition
let
f
be
Relation
;
let
r
,
s
be
Real
;
pred
f
lies_between
r
,
s
means
:: GOBOARD4:def 1
rng
f
c=
[.
r
,
s
.]
;
end;
::
deftheorem
defines
lies_between
GOBOARD4:def 1 :
for
f
being
Relation
for
r
,
s
being
Real
holds
(
f
lies_between
r
,
s
iff
rng
f
c=
[.
r
,
s
.]
);
definition
let
f
be
FinSequence
of
REAL
;
let
r
,
s
be
Real
;
redefine
pred
f
lies_between
r
,
s
means
:: GOBOARD4:def 2
for
n
being
Nat
st
n
in
dom
f
holds
(
r
<=
f
.
n
&
f
.
n
<=
s
);
compatibility
(
f
lies_between
r
,
s
iff for
n
being
Nat
st
n
in
dom
f
holds
(
r
<=
f
.
n
&
f
.
n
<=
s
) )
proof
end;
end;
::
deftheorem
defines
lies_between
GOBOARD4:def 2 :
for
f
being
FinSequence
of
REAL
for
r
,
s
being
Real
holds
(
f
lies_between
r
,
s
iff for
n
being
Nat
st
n
in
dom
f
holds
(
r
<=
f
.
n
&
f
.
n
<=
s
) );
theorem
Th4
:
:: GOBOARD4:4
for
f1
,
f2
being
FinSequence
of
(
TOP-REAL
2
)
st 2
<=
len
f1
& 2
<=
len
f2
&
f1
is
special
&
f2
is
special
& ( for
n
being
Nat
st
n
in
dom
f1
&
n
+
1
in
dom
f1
holds
f1
/.
n
<>
f1
/.
(
n
+
1
)
) & ( for
n
being
Nat
st
n
in
dom
f2
&
n
+
1
in
dom
f2
holds
f2
/.
n
<>
f2
/.
(
n
+
1
)
) &
X_axis
f1
lies_between
(
X_axis
f1
)
.
1,
(
X_axis
f1
)
.
(
len
f1
)
&
X_axis
f2
lies_between
(
X_axis
f1
)
.
1,
(
X_axis
f1
)
.
(
len
f1
)
&
Y_axis
f1
lies_between
(
Y_axis
f2
)
.
1,
(
Y_axis
f2
)
.
(
len
f2
)
&
Y_axis
f2
lies_between
(
Y_axis
f2
)
.
1,
(
Y_axis
f2
)
.
(
len
f2
)
holds
L~
f1
meets
L~
f2
proof
end;
theorem
Th5
:
:: GOBOARD4:5
for
f1
,
f2
being
FinSequence
of
(
TOP-REAL
2
)
st
f1
is
one-to-one
&
f1
is
special
& 2
<=
len
f1
&
f2
is
one-to-one
&
f2
is
special
& 2
<=
len
f2
&
X_axis
f1
lies_between
(
X_axis
f1
)
.
1,
(
X_axis
f1
)
.
(
len
f1
)
&
X_axis
f2
lies_between
(
X_axis
f1
)
.
1,
(
X_axis
f1
)
.
(
len
f1
)
&
Y_axis
f1
lies_between
(
Y_axis
f2
)
.
1,
(
Y_axis
f2
)
.
(
len
f2
)
&
Y_axis
f2
lies_between
(
Y_axis
f2
)
.
1,
(
Y_axis
f2
)
.
(
len
f2
)
holds
L~
f1
meets
L~
f2
proof
end;
theorem
:: GOBOARD4:6
for
P1
,
P2
being
Subset
of
(
TOP-REAL
2
)
for
p1
,
p2
,
q1
,
q2
being
Point
of
(
TOP-REAL
2
)
st
P1
is_S-P_arc_joining
p1
,
q1
&
P2
is_S-P_arc_joining
p2
,
q2
& ( for
p
being
Point
of
(
TOP-REAL
2
)
st
p
in
P1
\/
P2
holds
(
p1
`1
<=
p
`1
&
p
`1
<=
q1
`1
) ) & ( for
p
being
Point
of
(
TOP-REAL
2
)
st
p
in
P1
\/
P2
holds
(
p2
`2
<=
p
`2
&
p
`2
<=
q2
`2
) ) holds
P1
meets
P2
proof
end;