theorem
for
C being
category for
o1,
o2,
o3,
o4 being
Object of
C for
a being
Morphism of
o1,
o2 for
b being
Morphism of
o2,
o3 for
c being
Morphism of
o1,
o4 for
d being
Morphism of
o4,
o3 st
b * a = d * c &
a * (a ") = idm o2 &
(d ") * d = idm o4 &
<^o1,o2^> <> {} &
<^o2,o1^> <> {} &
<^o2,o3^> <> {} &
<^o3,o4^> <> {} &
<^o4,o3^> <> {} holds
c * (a ") = (d ") * b
theorem
for
A being non
empty transitive AltCatStr for
B,
C being non
empty with_units AltCatStr for
F being
feasible Covariant FunctorStr over
A,
B for
G being
FunctorStr over
B,
C for
o,
o1 being
Object of
A holds
Morph-Map (
(G * F),
o,
o1)
= (Morph-Map (G,(F . o),(F . o1))) * (Morph-Map (F,o,o1))
theorem
for
A being non
empty transitive AltCatStr for
B,
C being non
empty with_units AltCatStr for
F being
feasible Contravariant FunctorStr over
A,
B for
G being
FunctorStr over
B,
C for
o,
o1 being
Object of
A holds
Morph-Map (
(G * F),
o,
o1)
= (Morph-Map (G,(F . o1),(F . o))) * (Morph-Map (F,o,o1))
Lm1:
for I1 being set
for I2 being non empty set
for f being Function of I1,I2
for A being ManySortedSet of I1
for B being ManySortedSet of I2
for M being ManySortedFunction of A,B * f holds ((id B) * f) ** M = M
theorem
for
A,
B,
C,
D being
category for
F1,
F2 being
covariant Functor of
A,
B for
G1,
G2 being
covariant Functor of
B,
C for
H1,
H2 being
covariant Functor of
C,
D for
t being
transformation of
F1,
F2 for
s being
transformation of
G1,
G2 for
u being
transformation of
H1,
H2 st
F1 is_transformable_to F2 &
G1 is_transformable_to G2 &
H1 is_transformable_to H2 holds
(u (#) s) (#) t = u (#) (s (#) t)
Lm2:
now for A, B, C being category
for F1, F2 being covariant Functor of A,B
for G1, G2 being covariant Functor of B,C
for s being natural_transformation of G1,G2
for t being natural_transformation of F1,F2 st F1 is_naturally_transformable_to F2 & G1 is_naturally_transformable_to G2 holds
( G1 * F1 is_naturally_transformable_to G2 * F2 & s (#) t is natural_transformation of G1 * F1,G2 * F2 )
let A,
B,
C be
category;
for F1, F2 being covariant Functor of A,B
for G1, G2 being covariant Functor of B,C
for s being natural_transformation of G1,G2
for t being natural_transformation of F1,F2 st F1 is_naturally_transformable_to F2 & G1 is_naturally_transformable_to G2 holds
( G1 * F1 is_naturally_transformable_to G2 * F2 & s (#) t is natural_transformation of G1 * F1,G2 * F2 )let F1,
F2 be
covariant Functor of
A,
B;
for G1, G2 being covariant Functor of B,C
for s being natural_transformation of G1,G2
for t being natural_transformation of F1,F2 st F1 is_naturally_transformable_to F2 & G1 is_naturally_transformable_to G2 holds
( G1 * F1 is_naturally_transformable_to G2 * F2 & s (#) t is natural_transformation of G1 * F1,G2 * F2 )let G1,
G2 be
covariant Functor of
B,
C;
for s being natural_transformation of G1,G2
for t being natural_transformation of F1,F2 st F1 is_naturally_transformable_to F2 & G1 is_naturally_transformable_to G2 holds
( G1 * F1 is_naturally_transformable_to G2 * F2 & s (#) t is natural_transformation of G1 * F1,G2 * F2 )let s be
natural_transformation of
G1,
G2;
for t being natural_transformation of F1,F2 st F1 is_naturally_transformable_to F2 & G1 is_naturally_transformable_to G2 holds
( G1 * F1 is_naturally_transformable_to G2 * F2 & s (#) t is natural_transformation of G1 * F1,G2 * F2 )let t be
natural_transformation of
F1,
F2;
( F1 is_naturally_transformable_to F2 & G1 is_naturally_transformable_to G2 implies ( G1 * F1 is_naturally_transformable_to G2 * F2 & s (#) t is natural_transformation of G1 * F1,G2 * F2 ) )set k =
s (#) t;
assume A1:
F1 is_naturally_transformable_to F2
;
( G1 is_naturally_transformable_to G2 implies ( G1 * F1 is_naturally_transformable_to G2 * F2 & s (#) t is natural_transformation of G1 * F1,G2 * F2 ) )then A2:
F1 is_transformable_to F2
;
assume A3:
G1 is_naturally_transformable_to G2
;
( G1 * F1 is_naturally_transformable_to G2 * F2 & s (#) t is natural_transformation of G1 * F1,G2 * F2 )then A4:
G1 is_transformable_to G2
;
A5:
now for a, b being Object of A st <^a,b^> <> {} holds
for f being Morphism of a,b holds ((s (#) t) ! b) * ((G1 * F1) . f) = ((G2 * F2) . f) * ((s (#) t) ! a)
let a,
b be
Object of
A;
( <^a,b^> <> {} implies for f being Morphism of a,b holds ((s (#) t) ! b) * ((G1 * F1) . f) = ((G2 * F2) . f) * ((s (#) t) ! a) )assume A6:
<^a,b^> <> {}
;
for f being Morphism of a,b holds ((s (#) t) ! b) * ((G1 * F1) . f) = ((G2 * F2) . f) * ((s (#) t) ! a)A7:
<^((G1 * F1) . a),((G1 * F1) . b)^> <> {}
by A6, FUNCTOR0:def 18;
A8:
(G2 * F2) . a = G2 . (F2 . a)
by FUNCTOR0:33;
then reconsider sF2a =
s ! (F2 . a) as
Morphism of
((G1 * F2) . a),
((G2 * F2) . a) by FUNCTOR0:33;
A9:
(G2 * F2) . b = G2 . (F2 . b)
by FUNCTOR0:33;
then reconsider sF2b =
s ! (F2 . b) as
Morphism of
((G1 * F2) . b),
((G2 * F2) . b) by FUNCTOR0:33;
<^(G1 . (F2 . b)),(G2 . (F2 . b))^> <> {}
by A4;
then A10:
<^((G1 * F2) . b),((G2 * F2) . b)^> <> {}
by A9, FUNCTOR0:33;
let f be
Morphism of
a,
b;
((s (#) t) ! b) * ((G1 * F1) . f) = ((G2 * F2) . f) * ((s (#) t) ! a)A11:
(G1 * F1) . a = G1 . (F1 . a)
by FUNCTOR0:33;
then reconsider G1tbF1f =
G1 . ((t ! b) * (F1 . f)) as
Morphism of
((G1 * F1) . a),
((G1 * F2) . b) by FUNCTOR0:33;
reconsider G1ta =
G1 . (t ! a) as
Morphism of
((G1 * F1) . a),
((G1 * F2) . a) by A11, FUNCTOR0:33;
A12:
<^(G1 . (F1 . a)),(G2 . (F1 . a))^> <> {}
by A4;
A13:
(G1 * F1) . b = G1 . (F1 . b)
by FUNCTOR0:33;
then reconsider G1tb =
G1 . (t ! b) as
Morphism of
((G1 * F1) . b),
((G1 * F2) . b) by FUNCTOR0:33;
A14:
<^(F1 . b),(F2 . b)^> <> {}
by A2;
then
<^(G1 . (F1 . b)),(G1 . (F2 . b))^> <> {}
by FUNCTOR0:def 18;
then A15:
<^((G1 * F1) . b),((G1 * F2) . b)^> <> {}
by A13, FUNCTOR0:33;
A16:
<^(F1 . a),(F1 . b)^> <> {}
by A6, FUNCTOR0:def 18;
then A17:
<^(F1 . a),(F2 . b)^> <> {}
by A14, ALTCAT_1:def 2;
reconsider G1F1f =
G1 . (F1 . f) as
Morphism of
((G1 * F1) . a),
((G1 * F1) . b) by A13, FUNCTOR0:33;
A18:
s ! (F2 . a) = (s * F2) . a
by A4, Def2;
A19:
G1 . ((t ! b) * (F1 . f)) =
(G1 . (t ! b)) * (G1 . (F1 . f))
by A14, A16, FUNCTOR0:def 23
.=
G1tb * G1F1f
by A11, A13, FUNCTOR0:33
;
reconsider G2F2f =
G2 . (F2 . f) as
Morphism of
((G2 * F2) . a),
((G2 * F2) . b) by A8, FUNCTOR0:33;
A20:
s ! (F2 . b) = (s * F2) . b
by A4, Def2;
A21:
G1 * F2 is_transformable_to G2 * F2
by A4, Th10;
A22:
<^(F2 . a),(F2 . b)^> <> {}
by A6, FUNCTOR0:def 18;
then A23:
<^(G2 . (F2 . a)),(G2 . (F2 . b))^> <> {}
by FUNCTOR0:def 18;
A24:
<^(F1 . a),(F2 . a)^> <> {}
by A2;
then A25:
<^(G2 . (F1 . a)),(G2 . (F2 . a))^> <> {}
by FUNCTOR0:def 18;
A26:
G1 * F1 is_transformable_to G1 * F2
by A2, Th10;
hence ((s (#) t) ! b) * ((G1 * F1) . f) =
(((s * F2) ! b) * ((G1 * t) ! b)) * ((G1 * F1) . f)
by A21, FUNCTOR2:def 5
.=
(sF2b * ((G1 * t) ! b)) * ((G1 * F1) . f)
by A21, A20, FUNCTOR2:def 4
.=
(sF2b * G1tb) * ((G1 * F1) . f)
by A2, Th11
.=
(sF2b * G1tb) * G1F1f
by A6, Th6
.=
sF2b * G1tbF1f
by A7, A15, A10, A19, ALTCAT_1:21
.=
(s ! (F2 . b)) * (G1 . ((t ! b) * (F1 . f)))
by A11, A9, FUNCTOR0:33
.=
(G2 . ((t ! b) * (F1 . f))) * (s ! (F1 . a))
by A3, A17, FUNCTOR2:def 7
.=
(G2 . ((F2 . f) * (t ! a))) * (s ! (F1 . a))
by A1, A6, FUNCTOR2:def 7
.=
((G2 . (F2 . f)) * (G2 . (t ! a))) * (s ! (F1 . a))
by A22, A24, FUNCTOR0:def 23
.=
(G2 . (F2 . f)) * ((G2 . (t ! a)) * (s ! (F1 . a)))
by A12, A25, A23, ALTCAT_1:21
.=
(G2 . (F2 . f)) * ((s ! (F2 . a)) * (G1 . (t ! a)))
by A3, A24, FUNCTOR2:def 7
.=
G2F2f * (sF2a * G1ta)
by A11, A8, A9, FUNCTOR0:33
.=
((G2 * F2) . f) * (sF2a * G1ta)
by A6, Th6
.=
((G2 * F2) . f) * (((s * F2) ! a) * G1ta)
by A21, A18, FUNCTOR2:def 4
.=
((G2 * F2) . f) * (((s * F2) ! a) * ((G1 * t) ! a))
by A2, Th11
.=
((G2 * F2) . f) * ((s (#) t) ! a)
by A21, A26, FUNCTOR2:def 5
;
verum
end;
thus
G1 * F1 is_naturally_transformable_to G2 * F2
by A2, A4, Th10, A5;
s (#) t is natural_transformation of G1 * F1,G2 * F2hence
s (#) t is
natural_transformation of
G1 * F1,
G2 * F2
by A5, FUNCTOR2:def 7;
verum
end;
theorem
for
A,
B,
C being
category for
F1,
F2,
F3 being
covariant Functor of
A,
B for
G1,
G2,
G3 being
covariant Functor of
B,
C for
s being
natural_transformation of
G1,
G2 for
s1 being
natural_transformation of
G2,
G3 for
t being
transformation of
F1,
F2 for
t1 being
transformation of
F2,
F3 st
F1 is_naturally_transformable_to F2 &
F2 is_naturally_transformable_to F3 &
G1 is_naturally_transformable_to G2 &
G2 is_naturally_transformable_to G3 holds
(s1 `*` s) (#) (t1 `*` t) = (s1 (#) t1) `*` (s (#) t)
theorem
for
A,
B,
C being
category for
F1,
F2 being
covariant Functor of
A,
B for
G1,
G2 being
covariant Functor of
B,
C for
e being
natural_equivalence of
F1,
F2 for
f being
natural_equivalence of
G1,
G2 st
F1,
F2 are_naturally_equivalent &
G1,
G2 are_naturally_equivalent holds
(
G1 * F1,
G2 * F2 are_naturally_equivalent &
f (#) e is
natural_equivalence of
G1 * F1,
G2 * F2 )