theorem Th1:
for
i,
k,
l being
Nat st
i >= k + l holds
i >= k
definition
let E be non
empty set ;
let F be
Subset of
(E ^omega);
let TS be non
empty transition-system over
F;
existence
ex b1 being strict transition-system over Lex E st
( the carrier of b1 = bool the carrier of TS & ( for S being Subset of TS
for w being Element of E ^omega
for T being Subset of TS holds
( [[S,w],T] in the Tran of b1 iff ( len w = 1 & T = w -succ_of (S,TS) ) ) ) )
uniqueness
for b1, b2 being strict transition-system over Lex E st the carrier of b1 = bool the carrier of TS & ( for S being Subset of TS
for w being Element of E ^omega
for T being Subset of TS holds
( [[S,w],T] in the Tran of b1 iff ( len w = 1 & T = w -succ_of (S,TS) ) ) ) & the carrier of b2 = bool the carrier of TS & ( for S being Subset of TS
for w being Element of E ^omega
for T being Subset of TS holds
( [[S,w],T] in the Tran of b2 iff ( len w = 1 & T = w -succ_of (S,TS) ) ) ) holds
b1 = b2
end;
definition
let E be non
empty set ;
let F be
Subset of
(E ^omega);
let SA be non
empty semiautomaton over
F;
existence
ex b1 being strict semiautomaton over Lex E st
( transition-system(# the carrier of b1, the Tran of b1 #) = _bool transition-system(# the carrier of SA, the Tran of SA #) & the InitS of b1 = {((<%> E) -succ_of ( the InitS of SA,SA))} )
uniqueness
for b1, b2 being strict semiautomaton over Lex E st transition-system(# the carrier of b1, the Tran of b1 #) = _bool transition-system(# the carrier of SA, the Tran of SA #) & the InitS of b1 = {((<%> E) -succ_of ( the InitS of SA,SA))} & transition-system(# the carrier of b2, the Tran of b2 #) = _bool transition-system(# the carrier of SA, the Tran of SA #) & the InitS of b2 = {((<%> E) -succ_of ( the InitS of SA,SA))} holds
b1 = b2
;
end;
definition
let E be non
empty set ;
let F be
Subset of
(E ^omega);
let A be non
empty automaton over
F;
existence
ex b1 being strict automaton over Lex E st
( semiautomaton(# the carrier of b1, the Tran of b1, the InitS of b1 #) = _bool semiautomaton(# the carrier of A, the Tran of A, the InitS of A #) & the FinalS of b1 = { Q where Q is Element of b1 : Q meets the FinalS of A } )
uniqueness
for b1, b2 being strict automaton over Lex E st semiautomaton(# the carrier of b1, the Tran of b1, the InitS of b1 #) = _bool semiautomaton(# the carrier of A, the Tran of A, the InitS of A #) & the FinalS of b1 = { Q where Q is Element of b1 : Q meets the FinalS of A } & semiautomaton(# the carrier of b2, the Tran of b2, the InitS of b2 #) = _bool semiautomaton(# the carrier of A, the Tran of A, the InitS of A #) & the FinalS of b2 = { Q where Q is Element of b2 : Q meets the FinalS of A } holds
b1 = b2
;
end;