registration
let a,
b,
c be
Complex;
reducibility
<*a,b,c*> . 1 = a
by FINSEQ_1:45;
reducibility
<*a,b,c*> . 2 = b
by FINSEQ_1:45;
reducibility
(- <*(- a),b,c*>) . 1 = a
reducibility
(- <*a,(- b),c*>) . 2 = b
reducibility
(- <*a,b,(- c)*>) . 3 = c
reducibility
(<*(a "),b,c*> ") . 1 = a
reducibility
(<*a,(b "),c*> ") . 2 = b
reducibility
(<*a,b,(c ")*> ") . 3 = c
end;
theorem AP3:
for
a,
b,
c,
x,
y,
z being
Complex holds
<*a,b,c*> + <*x,y,z*> = <*(a + x),(b + y),(c + z)*>
theorem
for
a,
b,
c,
d,
x,
y,
z,
v being
Complex holds
<*a,b,c,d*> + <*x,y,z,v*> = <*(a + x),(b + y),(c + z),(d + v)*>
theorem AM3:
for
a,
b,
c,
x,
y,
z being
Complex holds
<*a,b,c*> (#) <*x,y,z*> = <*(a * x),(b * y),(c * z)*>
theorem
for
a,
b,
c,
d,
x,
y,
z,
v being
Complex holds
<*a,b,c,d*> (#) <*x,y,z,v*> = <*(a * x),(b * y),(c * z),(d * v)*>