:: Introduction to Stopping Time in Stochastic Finance Theory
:: by Peter Jaeger
::
:: Received June 27, 2017
:: Copyright (c) 2017-2021 Association of Mizar Users
theorem
L
:
:: FINANCE4:1
for
X
being non
empty
set
for
t
being
object
for
f
being
Function
st
dom
f
=
X
holds
{
w
where
w
is
Element
of
X
:
f
.
w
=
t
}
=
Coim
(
f
,
t
)
proof
end;
definition
let
I
be
ext-real-membered
set
;
func
StoppingSetExt
I
->
Subset
of
ExtREAL
equals
:: FINANCE4:def 1
I
\/
{
+infty
}
;
correctness
coherence
I
\/
{
+infty
}
is
Subset
of
ExtREAL
;
by
MEMBERED:2
;
end;
::
deftheorem
defines
StoppingSetExt
FINANCE4:def 1 :
for
I
being
ext-real-membered
set
holds
StoppingSetExt
I
=
I
\/
{
+infty
}
;
registration
let
I
be
ext-real-membered
set
;
cluster
StoppingSetExt
I
->
non
empty
;
correctness
coherence
not
StoppingSetExt
I
is
empty
;
;
end;
:: Definition of stopping time
definition
let
T
be
Nat
;
func
StoppingSet
T
->
Subset
of
REAL
equals
:: FINANCE4:def 2
{
t
where
t
is
Element
of
NAT
: (
0
<=
t
&
t
<=
T
)
}
;
correctness
coherence
{
t
where
t
is
Element
of
NAT
: (
0
<=
t
&
t
<=
T
)
}
is
Subset
of
REAL
;
proof
end;
end;
::
deftheorem
defines
StoppingSet
FINANCE4:def 2 :
for
T
being
Nat
holds
StoppingSet
T
=
{
t
where
t
is
Element
of
NAT
: (
0
<=
t
&
t
<=
T
)
}
;
registration
let
T
be
Nat
;
cluster
StoppingSet
T
->
non
empty
;
correctness
coherence
not
StoppingSet
T
is
empty
;
proof
end;
end;
definition
let
T
be
Nat
;
func
StoppingSetExt
T
->
Subset
of
ExtREAL
equals
:: FINANCE4:def 3
(
StoppingSet
T
)
\/
{
+infty
}
;
correctness
coherence
(
StoppingSet
T
)
\/
{
+infty
}
is
Subset
of
ExtREAL
;
proof
end;
end;
::
deftheorem
defines
StoppingSetExt
FINANCE4:def 3 :
for
T
being
Nat
holds
StoppingSetExt
T
=
(
StoppingSet
T
)
\/
{
+infty
}
;
registration
let
T
be
Nat
;
cluster
StoppingSetExt
T
->
non
empty
;
coherence
not
StoppingSetExt
T
is
empty
;
end;
definition
let
T
be
Nat
;
let
F
be
Function
;
let
R
be
Relation
;
pred
R
is_StoppingTime_wrt
F
,
T
means
:: FINANCE4:def 4
for
t
being
Element
of
StoppingSet
T
holds
Coim
(
R
,
t
)
in
F
.
t
;
end;
::
deftheorem
defines
is_StoppingTime_wrt
FINANCE4:def 4 :
for
T
being
Nat
for
F
being
Function
for
R
being
Relation
holds
(
R
is_StoppingTime_wrt
F
,
T
iff for
t
being
Element
of
StoppingSet
T
holds
Coim
(
R
,
t
)
in
F
.
t
);
definition
let
Omega
be non
empty
set
;
let
T
be
Nat
;
let
MyFunc
be
Function
;
let
k
be
Function
of
Omega
,
(
StoppingSetExt
T
)
;
:: original:
is_StoppingTime_wrt
redefine
pred
k
is_StoppingTime_wrt
MyFunc
,
T
means
:: FINANCE4:def 5
for
t
being
Element
of
StoppingSet
T
holds
{
w
where
w
is
Element
of
Omega
:
k
.
w
=
t
}
in
MyFunc
.
t
;
compatibility
(
k
is_StoppingTime_wrt
MyFunc
,
T
iff for
t
being
Element
of
StoppingSet
T
holds
{
w
where
w
is
Element
of
Omega
:
k
.
w
=
t
}
in
MyFunc
.
t
)
proof
end;
end;
::
deftheorem
defines
is_StoppingTime_wrt
FINANCE4:def 5 :
for
Omega
being non
empty
set
for
T
being
Nat
for
MyFunc
being
Function
for
k
being
Function
of
Omega
,
(
StoppingSetExt
T
)
holds
(
k
is_StoppingTime_wrt
MyFunc
,
T
iff for
t
being
Element
of
StoppingSet
T
holds
{
w
where
w
is
Element
of
Omega
:
k
.
w
=
t
}
in
MyFunc
.
t
);
:: Alternative definition for stopping time
theorem
KJK
:
:: FINANCE4:2
for
Omega
being non
empty
set
for
Sigma
being
SigmaField
of
Omega
for
T
being
Nat
for
MyFunc
being
Filtration
of
StoppingSet
T
,
Sigma
for
k
being
Function
of
Omega
,
(
StoppingSetExt
T
)
holds
(
k
is_StoppingTime_wrt
MyFunc
,
T
iff for
t
being
Element
of
StoppingSet
T
holds
{
w
where
w
is
Element
of
Omega
:
k
.
w
<=
t
}
in
MyFunc
.
t
)
proof
end;
:: Examples of stopping times
theorem
:: FINANCE4:3
for
Omega
being non
empty
set
for
Sigma
being
SigmaField
of
Omega
for
T
being
Nat
for
TFix
being
Element
of
StoppingSetExt
T
for
MyFunc
being
Filtration
of
StoppingSet
T
,
Sigma
holds
Omega
-->
TFix
is_StoppingTime_wrt
MyFunc
,
T
proof
end;
definition
let
Omega
be non
empty
set
;
let
T
be
Nat
;
let
k1
,
k2
be
Function
of
Omega
,
(
StoppingSetExt
T
)
;
func
max
(
k1
,
k2
)
->
Function
of
Omega
,
ExtREAL
means
:
Def20
:
:: FINANCE4:def 6
for
w
being
Element
of
Omega
holds
it
.
w
=
max
(
(
k1
.
w
)
,
(
k2
.
w
)
);
existence
ex
b
1
being
Function
of
Omega
,
ExtREAL
st
for
w
being
Element
of
Omega
holds
b
1
.
w
=
max
(
(
k1
.
w
)
,
(
k2
.
w
)
)
proof
end;
uniqueness
for
b
1
,
b
2
being
Function
of
Omega
,
ExtREAL
st ( for
w
being
Element
of
Omega
holds
b
1
.
w
=
max
(
(
k1
.
w
)
,
(
k2
.
w
)
) ) & ( for
w
being
Element
of
Omega
holds
b
2
.
w
=
max
(
(
k1
.
w
)
,
(
k2
.
w
)
) ) holds
b
1
=
b
2
proof
end;
end;
::
deftheorem
Def20
defines
max
FINANCE4:def 6 :
for
Omega
being non
empty
set
for
T
being
Nat
for
k1
,
k2
being
Function
of
Omega
,
(
StoppingSetExt
T
)
for
b
5
being
Function
of
Omega
,
ExtREAL
holds
(
b
5
=
max
(
k1
,
k2
) iff for
w
being
Element
of
Omega
holds
b
5
.
w
=
max
(
(
k1
.
w
)
,
(
k2
.
w
)
) );
definition
let
Omega
be non
empty
set
;
let
T
be
Nat
;
let
k1
,
k2
be
Function
of
Omega
,
(
StoppingSetExt
T
)
;
func
min
(
k1
,
k2
)
->
Function
of
Omega
,
ExtREAL
means
:
Def21
:
:: FINANCE4:def 7
for
w
being
Element
of
Omega
holds
it
.
w
=
min
(
(
k1
.
w
)
,
(
k2
.
w
)
);
existence
ex
b
1
being
Function
of
Omega
,
ExtREAL
st
for
w
being
Element
of
Omega
holds
b
1
.
w
=
min
(
(
k1
.
w
)
,
(
k2
.
w
)
)
proof
end;
uniqueness
for
b
1
,
b
2
being
Function
of
Omega
,
ExtREAL
st ( for
w
being
Element
of
Omega
holds
b
1
.
w
=
min
(
(
k1
.
w
)
,
(
k2
.
w
)
) ) & ( for
w
being
Element
of
Omega
holds
b
2
.
w
=
min
(
(
k1
.
w
)
,
(
k2
.
w
)
) ) holds
b
1
=
b
2
proof
end;
end;
::
deftheorem
Def21
defines
min
FINANCE4:def 7 :
for
Omega
being non
empty
set
for
T
being
Nat
for
k1
,
k2
being
Function
of
Omega
,
(
StoppingSetExt
T
)
for
b
5
being
Function
of
Omega
,
ExtREAL
holds
(
b
5
=
min
(
k1
,
k2
) iff for
w
being
Element
of
Omega
holds
b
5
.
w
=
min
(
(
k1
.
w
)
,
(
k2
.
w
)
) );
theorem
:: FINANCE4:4
for
Omega
being non
empty
set
for
Sigma
being
SigmaField
of
Omega
for
T
being
Nat
for
MyFunc
being
Filtration
of
StoppingSet
T
,
Sigma
for
k1
,
k2
being
Function
of
Omega
,
(
StoppingSetExt
T
)
st
k1
is_StoppingTime_wrt
MyFunc
,
T
&
k2
is_StoppingTime_wrt
MyFunc
,
T
holds
ex
k3
being
Function
of
Omega
,
(
StoppingSetExt
T
)
st
(
k3
=
max
(
k1
,
k2
) &
k3
is_StoppingTime_wrt
MyFunc
,
T
)
proof
end;
theorem
:: FINANCE4:5
for
Omega
being non
empty
set
for
Sigma
being
SigmaField
of
Omega
for
T
being
Nat
for
MyFunc
being
Filtration
of
StoppingSet
T
,
Sigma
for
k1
,
k2
being
Function
of
Omega
,
(
StoppingSetExt
T
)
st
k1
is_StoppingTime_wrt
MyFunc
,
T
&
k2
is_StoppingTime_wrt
MyFunc
,
T
holds
ex
k3
being
Function
of
Omega
,
(
StoppingSetExt
T
)
st
(
k3
=
min
(
k1
,
k2
) &
k3
is_StoppingTime_wrt
MyFunc
,
T
)
proof
end;
Lemma1
:
1
in
StoppingSetExt
2
proof
end;
Lemma2
:
2
in
StoppingSetExt
2
proof
end;
definition
let
t
be
object
;
func
Special_StoppingSet
t
->
Element
of
StoppingSetExt
2
equals
:: FINANCE4:def 8
IFIN
(
t
,
{
1,2
}
,1,2);
correctness
coherence
IFIN
(
t
,
{
1,2
}
,1,2) is
Element
of
StoppingSetExt
2
;
proof
end;
end;
::
deftheorem
defines
Special_StoppingSet
FINANCE4:def 8 :
for
t
being
object
holds
Special_StoppingSet
t
=
IFIN
(
t
,
{
1,2
}
,1,2);
theorem
:: FINANCE4:6
for
Omega
being non
empty
set
for
Sigma
being
SigmaField
of
Omega
st
Omega
=
{
1,2,3,4
}
holds
for
MyFunc
being
Filtration
of
StoppingSet
2,
Sigma
st
MyFunc
.
0
=
Special_SigmaField1
&
MyFunc
.
1
=
Special_SigmaField2
&
MyFunc
.
2
=
Trivial-SigmaField
Omega
holds
ex
ST
being
Function
of
Omega
,
(
StoppingSetExt
2
)
st
(
ST
is_StoppingTime_wrt
MyFunc
,2 &
ST
.
1
=
1 &
ST
.
2
=
1 &
ST
.
3
=
2 &
ST
.
4
=
2 &
{
w
where
w
is
Element
of
Omega
:
ST
.
w
=
0
}
=
{}
&
{
w
where
w
is
Element
of
Omega
:
ST
.
w
=
1
}
=
{
1,2
}
&
{
w
where
w
is
Element
of
Omega
:
ST
.
w
=
2
}
=
{
3,4
}
)
proof
end;