theorem Th1:
for
V being
RealLinearSpace for
x,
y being
VECTOR of
V st
Gen x,
y holds
( ( for
u,
u1,
v,
v1,
w being
Element of
(CESpace (V,x,y)) holds
(
u,
u '//' v,
w &
u,
v '//' w,
w & (
u,
v '//' u1,
v1 &
u,
v '//' v1,
u1 & not
u = v implies
u1 = v1 ) & (
u,
v '//' u1,
v1 &
u,
v '//' u1,
w & not
u,
v '//' v1,
w implies
u,
v '//' w,
v1 ) & (
u,
v '//' u1,
v1 implies
v,
u '//' v1,
u1 ) & (
u,
v '//' u1,
v1 &
u,
v '//' v1,
w implies
u,
v '//' u1,
w ) & ( not
u,
u1 '//' v,
v1 or
v,
v1 '//' u,
u1 or
v,
v1 '//' u1,
u ) ) ) & ( for
u,
v,
w being
Element of
(CESpace (V,x,y)) ex
u1 being
Element of
(CESpace (V,x,y)) st
(
w <> u1 &
w,
u1 '//' u,
v ) ) & ( for
u,
v,
w being
Element of
(CESpace (V,x,y)) ex
u1 being
Element of
(CESpace (V,x,y)) st
(
w <> u1 &
u,
v '//' w,
u1 ) ) )
theorem Th2:
for
V being
RealLinearSpace for
x,
y being
VECTOR of
V st
Gen x,
y holds
( ( for
u,
u1,
v,
v1,
w being
Element of
(CMSpace (V,x,y)) holds
(
u,
u '//' v,
w &
u,
v '//' w,
w & (
u,
v '//' u1,
v1 &
u,
v '//' v1,
u1 & not
u = v implies
u1 = v1 ) & (
u,
v '//' u1,
v1 &
u,
v '//' u1,
w & not
u,
v '//' v1,
w implies
u,
v '//' w,
v1 ) & (
u,
v '//' u1,
v1 implies
v,
u '//' v1,
u1 ) & (
u,
v '//' u1,
v1 &
u,
v '//' v1,
w implies
u,
v '//' u1,
w ) & ( not
u,
u1 '//' v,
v1 or
v,
v1 '//' u,
u1 or
v,
v1 '//' u1,
u ) ) ) & ( for
u,
v,
w being
Element of
(CMSpace (V,x,y)) ex
u1 being
Element of
(CMSpace (V,x,y)) st
(
w <> u1 &
w,
u1 '//' u,
v ) ) & ( for
u,
v,
w being
Element of
(CMSpace (V,x,y)) ex
u1 being
Element of
(CMSpace (V,x,y)) st
(
w <> u1 &
u,
v '//' w,
u1 ) ) )
definition
let IT be non
empty OrtStr ;
attr IT is
Oriented_Orthogonality_Space-like means :
Def1:
( ( for
u,
u1,
v,
v1,
w being
Element of
IT holds
(
u,
u '//' v,
w &
u,
v '//' w,
w & (
u,
v '//' u1,
v1 &
u,
v '//' v1,
u1 & not
u = v implies
u1 = v1 ) & (
u,
v '//' u1,
v1 &
u,
v '//' u1,
w & not
u,
v '//' v1,
w implies
u,
v '//' w,
v1 ) & (
u,
v '//' u1,
v1 implies
v,
u '//' v1,
u1 ) & (
u,
v '//' u1,
v1 &
u,
v '//' v1,
w implies
u,
v '//' u1,
w ) & ( not
u,
u1 '//' v,
v1 or
v,
v1 '//' u,
u1 or
v,
v1 '//' u1,
u ) ) ) & ( for
u,
v,
w being
Element of
IT ex
u1 being
Element of
IT st
(
w <> u1 &
w,
u1 '//' u,
v ) ) & ( for
u,
v,
w being
Element of
IT ex
u1 being
Element of
IT st
(
w <> u1 &
u,
v '//' w,
u1 ) ) );
end;
::
deftheorem Def1 defines
Oriented_Orthogonality_Space-like DIRORT:def 1 :
for IT being non empty OrtStr holds
( IT is Oriented_Orthogonality_Space-like iff ( ( for u, u1, v, v1, w being Element of IT holds
( u,u '//' v,w & u,v '//' w,w & ( u,v '//' u1,v1 & u,v '//' v1,u1 & not u = v implies u1 = v1 ) & ( u,v '//' u1,v1 & u,v '//' u1,w & not u,v '//' v1,w implies u,v '//' w,v1 ) & ( u,v '//' u1,v1 implies v,u '//' v1,u1 ) & ( u,v '//' u1,v1 & u,v '//' v1,w implies u,v '//' u1,w ) & ( not u,u1 '//' v,v1 or v,v1 '//' u,u1 or v,v1 '//' u1,u ) ) ) & ( for u, v, w being Element of IT ex u1 being Element of IT st
( w <> u1 & w,u1 '//' u,v ) ) & ( for u, v, w being Element of IT ex u1 being Element of IT st
( w <> u1 & u,v '//' w,u1 ) ) ) );
::
deftheorem defines
// DIRORT:def 3 :
for AS being Oriented_Orthogonality_Space
for a, b, c, d being Element of AS holds
( a,b // c,d iff ex e, f being Element of AS st
( e <> f & e,f '//' a,b & e,f '//' c,d ) );
definition
let IT be
Oriented_Orthogonality_Space;
attr IT is
bach_transitive means
for
u,
u1,
u2,
v,
v1,
v2,
w,
w1 being
Element of
IT st
u,
u1 '//' v,
v1 &
w,
w1 '//' v,
v1 &
w,
w1 '//' u2,
v2 & not
w = w1 & not
v = v1 holds
u,
u1 '//' u2,
v2;
end;
::
deftheorem defines
bach_transitive DIRORT:def 4 :
for IT being Oriented_Orthogonality_Space holds
( IT is bach_transitive iff for u, u1, u2, v, v1, v2, w, w1 being Element of IT st u,u1 '//' v,v1 & w,w1 '//' v,v1 & w,w1 '//' u2,v2 & not w = w1 & not v = v1 holds
u,u1 '//' u2,v2 );
definition
let IT be
Oriented_Orthogonality_Space;
attr IT is
right_transitive means
for
u,
u1,
u2,
v,
v1,
v2,
w,
w1 being
Element of
IT st
u,
u1 '//' v,
v1 &
v,
v1 '//' w,
w1 &
u2,
v2 '//' w,
w1 & not
w = w1 & not
v = v1 holds
u,
u1 '//' u2,
v2;
end;
::
deftheorem defines
right_transitive DIRORT:def 5 :
for IT being Oriented_Orthogonality_Space holds
( IT is right_transitive iff for u, u1, u2, v, v1, v2, w, w1 being Element of IT st u,u1 '//' v,v1 & v,v1 '//' w,w1 & u2,v2 '//' w,w1 & not w = w1 & not v = v1 holds
u,u1 '//' u2,v2 );
definition
let IT be
Oriented_Orthogonality_Space;
attr IT is
left_transitive means
for
u,
u1,
u2,
v,
v1,
v2,
w,
w1 being
Element of
IT st
u,
u1 '//' v,
v1 &
v,
v1 '//' w,
w1 &
u,
u1 '//' u2,
v2 & not
u = u1 & not
v = v1 holds
u2,
v2 '//' w,
w1;
end;
::
deftheorem defines
left_transitive DIRORT:def 6 :
for IT being Oriented_Orthogonality_Space holds
( IT is left_transitive iff for u, u1, u2, v, v1, v2, w, w1 being Element of IT st u,u1 '//' v,v1 & v,v1 '//' w,w1 & u,u1 '//' u2,v2 & not u = u1 & not v = v1 holds
u2,v2 '//' w,w1 );
theorem
for
AS being
Oriented_Orthogonality_Space holds
(
AS is
left_transitive iff for
v,
v1,
w,
w1,
u2,
v2 being
Element of
AS st
v,
v1 // u2,
v2 &
v,
v1 '//' w,
w1 &
v <> v1 holds
u2,
v2 '//' w,
w1 )
theorem
for
AS being
Oriented_Orthogonality_Space holds
(
AS is
bach_transitive iff for
u,
u1,
u2,
v,
v1,
v2 being
Element of
AS st
u,
u1 '//' v,
v1 &
v,
v1 // u2,
v2 &
v <> v1 holds
u,
u1 '//' u2,
v2 )
theorem
for
AS being
Oriented_Orthogonality_Space st
AS is
bach_transitive holds
for
u,
u1,
v,
v1,
w,
w1 being
Element of
AS st
u,
u1 // v,
v1 &
v,
v1 // w,
w1 &
v <> v1 holds
u,
u1 // w,
w1
theorem
for
AS being
Oriented_Orthogonality_Space st
AS is
bach_transitive holds
(
AS is
right_transitive iff for
u,
u1,
v,
v1,
u2,
v2 being
Element of
AS st
u,
u1 '//' u2,
v2 &
v,
v1 '//' u2,
v2 &
u2 <> v2 holds
u,
u1 // v,
v1 )