LmPI:
0 < PI
by LEIBNIZ1:17;
definition
let a,
b be
Real;
let x,
y be
PartFunc of
REAL,
REAL;
existence
ex b1 being PartFunc of REAL,REAL st
( dom b1 = [.a,b.] & ( for t being Real st t in [.a,b.] holds
b1 . t = integral (((#R (1 / 2)) * (((x `| (dom x)) (#) (x `| (dom x))) + ((y `| (dom y)) (#) (y `| (dom y))))),a,t) ) )
uniqueness
for b1, b2 being PartFunc of REAL,REAL st dom b1 = [.a,b.] & ( for t being Real st t in [.a,b.] holds
b1 . t = integral (((#R (1 / 2)) * (((x `| (dom x)) (#) (x `| (dom x))) + ((y `| (dom y)) (#) (y `| (dom y))))),a,t) ) & dom b2 = [.a,b.] & ( for t being Real st t in [.a,b.] holds
b2 . t = integral (((#R (1 / 2)) * (((x `| (dom x)) (#) (x `| (dom x))) + ((y `| (dom y)) (#) (y `| (dom y))))),a,t) ) holds
b1 = b2
end;
::
deftheorem Def1 defines
ArcLenP CURVE:def 1 :
for a, b being Real
for x, y, b5 being PartFunc of REAL,REAL holds
( b5 = ArcLenP (x,y,a,b) iff ( dom b5 = [.a,b.] & ( for t being Real st t in [.a,b.] holds
b5 . t = integral (((#R (1 / 2)) * (((x `| (dom x)) (#) (x `| (dom x))) + ((y `| (dom y)) (#) (y `| (dom y))))),a,t) ) ) );
Lm1:
for a, b being Real holds ].a,b.[ c= [.a,b.]
by XXREAL_1:25;
theorem Th3:
for
a,
b being
Real for
x,
y being
PartFunc of
REAL,
REAL st
a < b &
x is
differentiable &
y is
differentiable &
[.a,b.] c= dom x &
[.a,b.] c= dom y &
x `| (dom x) is
continuous &
y `| (dom y) is
continuous & ( for
t being
Real st
t in (dom x) /\ (dom y) holds
0 < ((diff (x,t)) ^2) + ((diff (y,t)) ^2) ) holds
ex
a1,
b1 being
Real ex
l being
PartFunc of
REAL,
REAL ex
Z being
open Subset of
REAL st
(
a1 < a &
b < b1 &
Z = (dom x) /\ (dom y) &
[.a,b.] c= ].a1,b1.[ &
[.a1,b1.] c= Z &
dom l = Z & ( for
t being
Real st
t in [.a1,b1.] holds
l . t = integral (
((#R (1 / 2)) * (((x `| (dom x)) (#) (x `| (dom x))) + ((y `| (dom y)) (#) (y `| (dom y))))),
a1,
t) ) &
l is_differentiable_on ].a1,b1.[ &
l `| ].a1,b1.[ = ((#R (1 / 2)) * (((x `| (dom x)) (#) (x `| (dom x))) + ((y `| (dom y)) (#) (y `| (dom y))))) | ].a1,b1.[ &
l `| ].a1,b1.[ is
continuous & ( for
t being
Real st
t in ].a1,b1.[ holds
(
l is_differentiable_in t &
diff (
l,
t)
= (((diff (x,t)) ^2) + ((diff (y,t)) ^2)) #R (1 / 2) ) ) & ( for
t being
Real st
t in [.a,b.] holds
(ArcLenP (x,y,a,b)) . t = (l . t) - (l . a) ) )
theorem Th4:
for
a,
b being
Real for
x,
y being
PartFunc of
REAL,
REAL st
a < b &
x is
differentiable &
y is
differentiable &
[.a,b.] c= dom x &
[.a,b.] c= dom y &
x `| (dom x) is
continuous &
y `| (dom y) is
continuous & ( for
t being
Real st
t in (dom x) /\ (dom y) holds
0 < ((diff (x,t)) ^2) + ((diff (y,t)) ^2) ) holds
ex
a1,
b1 being
Real ex
L being
one-to-one PartFunc of
REAL,
REAL st
(
a1 < a &
b < b1 &
[.a1,b1.] c= (dom x) /\ (dom y) &
dom L = ].a1,b1.[ & ( for
t being
Real st
t in ].a1,b1.[ holds
L . t = integral (
((#R (1 / 2)) * (((x `| (dom x)) (#) (x `| (dom x))) + ((y `| (dom y)) (#) (y `| (dom y))))),
a1,
t) ) & ( for
t being
Real st
t in [.a,b.] holds
(ArcLenP (x,y,a,b)) . t = (L . t) - (L . a) ) &
L is
increasing &
L | [.a,b.] is
continuous &
L .: [.a,b.] = [.(L . a),(L . b).] & ( for
t being
Real st
t in ].a1,b1.[ holds
L is_differentiable_in t ) &
L is_differentiable_on ].a1,b1.[ & ( for
t being
Real st
t in ].a1,b1.[ holds
diff (
L,
t)
= (((diff (x,t)) ^2) + ((diff (y,t)) ^2)) #R (1 / 2) ) &
L " is_differentiable_on dom (L ") & ( for
t being
Real st
t in dom (L ") holds
diff (
(L "),
t)
= 1
/ (diff (L,((L ") . t))) ) &
L " is
continuous & ( for
s being
Real st
s in rng L holds
(
x * (L ") is_differentiable_in s &
y * (L ") is_differentiable_in s &
diff (
(x * (L ")),
s)
= (diff (x,((L ") . s))) * (diff ((L "),s)) &
diff (
(y * (L ")),
s)
= (diff (y,((L ") . s))) * (diff ((L "),s)) &
((diff ((x * (L ")),s)) ^2) + ((diff ((y * (L ")),s)) ^2) = 1 ) ) &
(x * (L ")) `| (dom (x * (L "))) = ((x `| (dom x)) * (L ")) (#) ((L ") `| (dom (L "))) &
(y * (L ")) `| (dom (y * (L "))) = ((y `| (dom y)) * (L ")) (#) ((L ") `| (dom (L "))) &
(L ") `| (dom (L ")) = ((L `| (dom L)) * (L ")) ^ &
(L ") `| (dom (L ")) is
continuous &
[.(L . a),(L . b).] c= dom (L ") &
[.(L . a),(L . b).] c= dom (x * (L ")) &
[.(L . a),(L . b).] c= dom (y * (L ")) &
[.(L . a),(L . b).] c= rng L &
dom (x * (L ")) = dom (L ") &
dom (y * (L ")) = dom (L ") &
x * (L ") is
differentiable &
y * (L ") is
differentiable &
(x * (L ")) `| (dom (x * (L "))) is
continuous &
(y * (L ")) `| (dom (y * (L "))) is
continuous & ( for
s being
Real st
s in (dom (x * (L "))) /\ (dom (y * (L "))) holds
((diff ((x * (L ")),s)) ^2) + ((diff ((y * (L ")),s)) ^2) = 1 ) &
integral (
(y (#) (x `| (dom x))),
a,
b)
= integral (
((y * (L ")) (#) ((x * (L ")) `| (dom (x * (L "))))),
(L . a),
(L . b)) )
Lm2:
for f being PartFunc of REAL,REAL
for N being open Subset of REAL st dom f = REAL & f is continuous holds
f " N is open
Lm3:
for x, y being PartFunc of REAL,REAL
for a, b being Real st a < b & x is differentiable & y is differentiable & ['a,b'] c= dom x & ['a,b'] c= dom y & x `| (dom x) is continuous & y `| (dom y) is continuous & ( for t being Real st t in (dom x) /\ (dom y) holds
((diff (x,t)) ^2) + ((diff (y,t)) ^2) = 1 ) & y . a = 0 & y . b = 0 holds
( integral ((y (#) (x `| (dom x))),a,b) <= ((1 / 2) * ((b - a) ^2)) / PI & ( not integral ((y (#) (x `| (dom x))),a,b) = ((1 / 2) * ((b - a) ^2)) / PI or for t being Real st t in [.a,b.] holds
( y . t = ((b - a) / PI) * (sin . ((PI * (t - a)) / (b - a))) & x . t = ((b - a) / PI) * (((- (cos . ((PI * (t - a)) / (b - a)))) + (cos . 0)) + ((PI / (b - a)) * (x . a))) ) or for t being Real st t in [.a,b.] holds
( y . t = - (((b - a) / PI) * (sin . ((PI * (t - a)) / (b - a)))) & x . t = ((b - a) / PI) * (((cos . ((PI * (t - a)) / (b - a))) - (cos . 0)) + ((PI / (b - a)) * (x . a))) ) ) & ( ( for t being Real st t in [.a,b.] holds
( y . t = ((b - a) / PI) * (sin . ((PI * (t - a)) / (b - a))) & x . t = ((b - a) / PI) * (((- (cos . ((PI * (t - a)) / (b - a)))) + (cos . 0)) + ((PI / (b - a)) * (x . a))) ) or for t being Real st t in [.a,b.] holds
( y . t = - (((b - a) / PI) * (sin . ((PI * (t - a)) / (b - a)))) & x . t = ((b - a) / PI) * (((cos . ((PI * (t - a)) / (b - a))) - (cos . 0)) + ((PI / (b - a)) * (x . a))) ) ) implies integral ((y (#) (x `| (dom x))),a,b) = ((1 / 2) * ((b - a) ^2)) / PI ) )
theorem
for
a,
b,
l being
Real for
x,
y being
PartFunc of
REAL,
REAL st
a < b &
(ArcLenP (x,y,a,b)) . b = l &
y . a = 0 &
y . b = 0 &
x is
differentiable &
y is
differentiable &
[.a,b.] c= dom x &
[.a,b.] c= dom y &
x `| (dom x) is
continuous &
y `| (dom y) is
continuous & ( for
t being
Real st
t in (dom x) /\ (dom y) holds
0 < ((diff (x,t)) ^2) + ((diff (y,t)) ^2) ) holds
(
integral (
(y (#) (x `| (dom x))),
a,
b)
<= ((1 / 2) * (l ^2)) / PI & ( not
integral (
(y (#) (x `| (dom x))),
a,
b)
= ((1 / 2) * (l ^2)) / PI or for
s being
Real st
s in [.a,b.] holds
(
y . s = (l / PI) * (sin . ((PI * ((ArcLenP (x,y,a,b)) . s)) / l)) &
x . s = (l / PI) * (((- (cos . ((PI * ((ArcLenP (x,y,a,b)) . s)) / l))) + (cos . 0)) + ((PI / l) * (x . a))) ) or for
s being
Real st
s in [.a,b.] holds
(
y . s = - ((l / PI) * (sin . ((PI * ((ArcLenP (x,y,a,b)) . s)) / l))) &
x . s = (l / PI) * (((cos . ((PI * ((ArcLenP (x,y,a,b)) . s)) / l)) - (cos . 0)) + ((PI / l) * (x . a))) ) ) & ( ( for
s being
Real st
s in [.a,b.] holds
(
y . s = (l / PI) * (sin . ((PI * ((ArcLenP (x,y,a,b)) . s)) / l)) &
x . s = (l / PI) * (((- (cos . ((PI * ((ArcLenP (x,y,a,b)) . s)) / l))) + (cos . 0)) + ((PI / l) * (x . a))) ) or for
s being
Real st
s in [.a,b.] holds
(
y . s = - ((l / PI) * (sin . ((PI * ((ArcLenP (x,y,a,b)) . s)) / l))) &
x . s = (l / PI) * (((cos . ((PI * ((ArcLenP (x,y,a,b)) . s)) / l)) - (cos . 0)) + ((PI / l) * (x . a))) ) ) implies
integral (
(y (#) (x `| (dom x))),
a,
b)
= ((1 / 2) * (l ^2)) / PI ) )