Lm1:
for rseq being Real_Sequence
for K being Real st ( for n being Nat holds rseq . n <= K ) holds
upper_bound (rng rseq) <= K
Lm2:
for rseq being Real_Sequence st rseq is bounded holds
for n being Nat holds rseq . n <= upper_bound (rng rseq)
Lm3:
for seq1, seq2 being Complex_Sequence st seq1 is bounded & seq2 is bounded holds
seq1 + seq2 is bounded
reconsider jj = 1 as Real ;
Lm4:
for c being Complex
for seq being Complex_Sequence st seq is bounded holds
c (#) seq is bounded
Lm5:
CLSStruct(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)) #) is Subspace of Linear_Space_of_ComplexSequences
by CSSPACE:11;
registration
coherence
( CLSStruct(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)) #) is Abelian & CLSStruct(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)) #) is add-associative & CLSStruct(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)) #) is right_zeroed & CLSStruct(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)) #) is right_complementable & CLSStruct(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)) #) is vector-distributive & CLSStruct(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)) #) is scalar-distributive & CLSStruct(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)) #) is scalar-associative & CLSStruct(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)) #) is scalar-unital )
by CSSPACE:11;
end;
Lm6:
( CLSStruct(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)) #) is Abelian & CLSStruct(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)) #) is add-associative & CLSStruct(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)) #) is right_zeroed & CLSStruct(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)) #) is right_complementable & CLSStruct(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)) #) is vector-distributive & CLSStruct(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)) #) is scalar-distributive & CLSStruct(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)) #) is scalar-associative & CLSStruct(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)) #) is scalar-unital )
;
Lm7:
for seq being Complex_Sequence st ( for n being Nat holds seq . n = 0c ) holds
( seq is bounded & upper_bound (rng |.seq.|) = 0 )
Lm8:
for seq being Complex_Sequence st seq is bounded holds
|.seq.| is bounded
Lm9:
for seq being Complex_Sequence st |.seq.| is bounded holds
seq is bounded
Lm10:
for seq being Complex_Sequence st seq is bounded & upper_bound (rng |.seq.|) = 0 holds
for n being Nat holds seq . n = 0c
registration
coherence
( CNORMSTR(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),Complex_linfty_norm #) is Abelian & CNORMSTR(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),Complex_linfty_norm #) is add-associative & CNORMSTR(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),Complex_linfty_norm #) is right_zeroed & CNORMSTR(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),Complex_linfty_norm #) is right_complementable & CNORMSTR(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),Complex_linfty_norm #) is vector-distributive & CNORMSTR(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),Complex_linfty_norm #) is scalar-distributive & CNORMSTR(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),Complex_linfty_norm #) is scalar-associative & CNORMSTR(# the_set_of_BoundedComplexSequences,(Zero_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Add_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),(Mult_ (the_set_of_BoundedComplexSequences,Linear_Space_of_ComplexSequences)),Complex_linfty_norm #) is scalar-unital )
by Lm6, CSSPACE3:2;
end;
Lm11:
for seq1, seq2, seq3 being Complex_Sequence holds
( seq1 = seq2 - seq3 iff for n being Nat holds seq1 . n = (seq2 . n) - (seq3 . n) )
theorem
for
X being non
empty set for
Y being
ComplexNormSpace holds
CLSStruct(#
(ComplexBoundedFunctions (X,Y)),
(Zero_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),
(Add_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),
(Mult_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))) #) is
Subspace of
ComplexVectSpace (
X,
Y)
by Th7, CSSPACE:11;
registration
let X be non
empty set ;
let Y be
ComplexNormSpace;
cluster CLSStruct(#
(ComplexBoundedFunctions (X,Y)),
(Zero_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),
(Add_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),
(Mult_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))) #)
-> right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ;
coherence
( CLSStruct(# (ComplexBoundedFunctions (X,Y)),(Zero_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(Add_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(Mult_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))) #) is Abelian & CLSStruct(# (ComplexBoundedFunctions (X,Y)),(Zero_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(Add_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(Mult_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))) #) is add-associative & CLSStruct(# (ComplexBoundedFunctions (X,Y)),(Zero_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(Add_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(Mult_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))) #) is right_zeroed & CLSStruct(# (ComplexBoundedFunctions (X,Y)),(Zero_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(Add_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(Mult_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))) #) is right_complementable & CLSStruct(# (ComplexBoundedFunctions (X,Y)),(Zero_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(Add_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(Mult_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))) #) is vector-distributive & CLSStruct(# (ComplexBoundedFunctions (X,Y)),(Zero_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(Add_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(Mult_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))) #) is scalar-distributive & CLSStruct(# (ComplexBoundedFunctions (X,Y)),(Zero_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(Add_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(Mult_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))) #) is scalar-associative & CLSStruct(# (ComplexBoundedFunctions (X,Y)),(Zero_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(Add_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(Mult_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))) #) is scalar-unital )
by Th7, CSSPACE:11;
end;
definition
let X be non
empty set ;
let Y be
ComplexNormSpace;
func C_VectorSpace_of_BoundedFunctions (
X,
Y)
-> ComplexLinearSpace equals
CLSStruct(#
(ComplexBoundedFunctions (X,Y)),
(Zero_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),
(Add_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),
(Mult_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))) #);
coherence
CLSStruct(# (ComplexBoundedFunctions (X,Y)),(Zero_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(Add_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(Mult_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))) #) is ComplexLinearSpace
;
end;
::
deftheorem defines
C_VectorSpace_of_BoundedFunctions CSSPACE4:def 6 :
for X being non empty set
for Y being ComplexNormSpace holds C_VectorSpace_of_BoundedFunctions (X,Y) = CLSStruct(# (ComplexBoundedFunctions (X,Y)),(Zero_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(Add_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(Mult_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))) #);
definition
let X be non
empty set ;
let Y be
ComplexNormSpace;
existence
ex b1 being Function of (ComplexBoundedFunctions (X,Y)),REAL st
for x being object st x in ComplexBoundedFunctions (X,Y) holds
b1 . x = upper_bound (PreNorms (modetrans (x,X,Y)))
uniqueness
for b1, b2 being Function of (ComplexBoundedFunctions (X,Y)),REAL st ( for x being object st x in ComplexBoundedFunctions (X,Y) holds
b1 . x = upper_bound (PreNorms (modetrans (x,X,Y))) ) & ( for x being object st x in ComplexBoundedFunctions (X,Y) holds
b2 . x = upper_bound (PreNorms (modetrans (x,X,Y))) ) holds
b1 = b2
end;
definition
let X be non
empty set ;
let Y be
ComplexNormSpace;
func C_NormSpace_of_BoundedFunctions (
X,
Y)
-> non
empty CNORMSTR equals
CNORMSTR(#
(ComplexBoundedFunctions (X,Y)),
(Zero_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),
(Add_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),
(Mult_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),
(ComplexBoundedFunctionsNorm (X,Y)) #);
coherence
CNORMSTR(# (ComplexBoundedFunctions (X,Y)),(Zero_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(Add_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(Mult_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(ComplexBoundedFunctionsNorm (X,Y)) #) is non empty CNORMSTR
;
end;
::
deftheorem defines
C_NormSpace_of_BoundedFunctions CSSPACE4:def 10 :
for X being non empty set
for Y being ComplexNormSpace holds C_NormSpace_of_BoundedFunctions (X,Y) = CNORMSTR(# (ComplexBoundedFunctions (X,Y)),(Zero_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(Add_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(Mult_ ((ComplexBoundedFunctions (X,Y)),(ComplexVectSpace (X,Y)))),(ComplexBoundedFunctionsNorm (X,Y)) #);
registration
let X be non
empty set ;
let Y be
ComplexNormSpace;
coherence
( C_NormSpace_of_BoundedFunctions (X,Y) is reflexive & C_NormSpace_of_BoundedFunctions (X,Y) is discerning & C_NormSpace_of_BoundedFunctions (X,Y) is ComplexNormSpace-like & C_NormSpace_of_BoundedFunctions (X,Y) is vector-distributive & C_NormSpace_of_BoundedFunctions (X,Y) is scalar-distributive & C_NormSpace_of_BoundedFunctions (X,Y) is scalar-associative & C_NormSpace_of_BoundedFunctions (X,Y) is scalar-unital & C_NormSpace_of_BoundedFunctions (X,Y) is Abelian & C_NormSpace_of_BoundedFunctions (X,Y) is add-associative & C_NormSpace_of_BoundedFunctions (X,Y) is right_zeroed & C_NormSpace_of_BoundedFunctions (X,Y) is right_complementable )
by Th24;
end;
Lm12:
for e being Real
for seq being Real_Sequence st seq is convergent & ex k being Nat st
for i being Nat st k <= i holds
seq . i <= e holds
lim seq <= e