Lm2:
for f being FinSequence
for p being set st ex i being Element of NAT st
( i in dom f & f . i = p ) holds
p is_tail_of f
by FUNCT_1:def 3;
definition
let Al be
QC-alphabet ;
let PR be
FinSequence of
[:(set_of_CQC-WFF-seq Al),Proof_Step_Kinds:];
let n be
Nat;
pred PR,
n is_a_correct_step means :
Def7:
ex
f being
FinSequence of
CQC-WFF Al st
(
Suc f is_tail_of Ant f &
(PR . n) `1 = f )
if (PR . n) `2 = 0 ex
f being
FinSequence of
CQC-WFF Al st
(PR . n) `1 = f ^ <*(VERUM Al)*> if (PR . n) `2 = 1
ex
i being
Nat ex
f,
g being
FinSequence of
CQC-WFF Al st
( 1
<= i &
i < n &
Ant f is_Subsequence_of Ant g &
Suc f = Suc g &
(PR . i) `1 = f &
(PR . n) `1 = g )
if (PR . n) `2 = 2
ex
i,
j being
Nat ex
f,
g being
FinSequence of
CQC-WFF Al st
( 1
<= i &
i < n & 1
<= j &
j < i &
len f > 1 &
len g > 1 &
Ant (Ant f) = Ant (Ant g) &
'not' (Suc (Ant f)) = Suc (Ant g) &
Suc f = Suc g &
f = (PR . j) `1 &
g = (PR . i) `1 &
(Ant (Ant f)) ^ <*(Suc f)*> = (PR . n) `1 )
if (PR . n) `2 = 3
ex
i,
j being
Nat ex
f,
g being
FinSequence of
CQC-WFF Al ex
p being
Element of
CQC-WFF Al st
( 1
<= i &
i < n & 1
<= j &
j < i &
len f > 1 &
Ant f = Ant g &
Suc (Ant f) = 'not' p &
'not' (Suc f) = Suc g &
f = (PR . j) `1 &
g = (PR . i) `1 &
(Ant (Ant f)) ^ <*p*> = (PR . n) `1 )
if (PR . n) `2 = 4
ex
i,
j being
Nat ex
f,
g being
FinSequence of
CQC-WFF Al st
( 1
<= i &
i < n & 1
<= j &
j < i &
Ant f = Ant g &
f = (PR . j) `1 &
g = (PR . i) `1 &
(Ant f) ^ <*((Suc f) '&' (Suc g))*> = (PR . n) `1 )
if (PR . n) `2 = 5
ex
i being
Nat ex
f being
FinSequence of
CQC-WFF Al ex
p,
q being
Element of
CQC-WFF Al st
( 1
<= i &
i < n &
p '&' q = Suc f &
f = (PR . i) `1 &
(Ant f) ^ <*p*> = (PR . n) `1 )
if (PR . n) `2 = 6
ex
i being
Nat ex
f being
FinSequence of
CQC-WFF Al ex
p,
q being
Element of
CQC-WFF Al st
( 1
<= i &
i < n &
p '&' q = Suc f &
f = (PR . i) `1 &
(Ant f) ^ <*q*> = (PR . n) `1 )
if (PR . n) `2 = 7
ex
i being
Nat ex
f being
FinSequence of
CQC-WFF Al ex
p being
Element of
CQC-WFF Al ex
x,
y being
bound_QC-variable of
Al st
( 1
<= i &
i < n &
Suc f = All (
x,
p) &
f = (PR . i) `1 &
(Ant f) ^ <*(p . (x,y))*> = (PR . n) `1 )
if (PR . n) `2 = 8
ex
i being
Nat ex
f being
FinSequence of
CQC-WFF Al ex
p being
Element of
CQC-WFF Al ex
x,
y being
bound_QC-variable of
Al st
( 1
<= i &
i < n &
Suc f = p . (
x,
y) & not
y in still_not-bound_in (Ant f) & not
y in still_not-bound_in (All (x,p)) &
f = (PR . i) `1 &
(Ant f) ^ <*(All (x,p))*> = (PR . n) `1 )
if (PR . n) `2 = 9
;
consistency
( ( (PR . n) `2 = 0 & (PR . n) `2 = 1 implies ( ex f being FinSequence of CQC-WFF Al st
( Suc f is_tail_of Ant f & (PR . n) `1 = f ) iff ex f being FinSequence of CQC-WFF Al st (PR . n) `1 = f ^ <*(VERUM Al)*> ) ) & ( (PR . n) `2 = 0 & (PR . n) `2 = 2 implies ( ex f being FinSequence of CQC-WFF Al st
( Suc f is_tail_of Ant f & (PR . n) `1 = f ) iff ex i being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & Ant f is_Subsequence_of Ant g & Suc f = Suc g & (PR . i) `1 = f & (PR . n) `1 = g ) ) ) & ( (PR . n) `2 = 0 & (PR . n) `2 = 3 implies ( ex f being FinSequence of CQC-WFF Al st
( Suc f is_tail_of Ant f & (PR . n) `1 = f ) iff ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & len f > 1 & len g > 1 & Ant (Ant f) = Ant (Ant g) & 'not' (Suc (Ant f)) = Suc (Ant g) & Suc f = Suc g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant (Ant f)) ^ <*(Suc f)*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 0 & (PR . n) `2 = 4 implies ( ex f being FinSequence of CQC-WFF Al st
( Suc f is_tail_of Ant f & (PR . n) `1 = f ) iff ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & len f > 1 & Ant f = Ant g & Suc (Ant f) = 'not' p & 'not' (Suc f) = Suc g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant (Ant f)) ^ <*p*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 0 & (PR . n) `2 = 5 implies ( ex f being FinSequence of CQC-WFF Al st
( Suc f is_tail_of Ant f & (PR . n) `1 = f ) iff ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & Ant f = Ant g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant f) ^ <*((Suc f) '&' (Suc g))*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 0 & (PR . n) `2 = 6 implies ( ex f being FinSequence of CQC-WFF Al st
( Suc f is_tail_of Ant f & (PR . n) `1 = f ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p, q being Element of CQC-WFF Al st
( 1 <= i & i < n & p '&' q = Suc f & f = (PR . i) `1 & (Ant f) ^ <*p*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 0 & (PR . n) `2 = 7 implies ( ex f being FinSequence of CQC-WFF Al st
( Suc f is_tail_of Ant f & (PR . n) `1 = f ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p, q being Element of CQC-WFF Al st
( 1 <= i & i < n & p '&' q = Suc f & f = (PR . i) `1 & (Ant f) ^ <*q*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 0 & (PR . n) `2 = 8 implies ( ex f being FinSequence of CQC-WFF Al st
( Suc f is_tail_of Ant f & (PR . n) `1 = f ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al ex x, y being bound_QC-variable of Al st
( 1 <= i & i < n & Suc f = All (x,p) & f = (PR . i) `1 & (Ant f) ^ <*(p . (x,y))*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 0 & (PR . n) `2 = 9 implies ( ex f being FinSequence of CQC-WFF Al st
( Suc f is_tail_of Ant f & (PR . n) `1 = f ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al ex x, y being bound_QC-variable of Al st
( 1 <= i & i < n & Suc f = p . (x,y) & not y in still_not-bound_in (Ant f) & not y in still_not-bound_in (All (x,p)) & f = (PR . i) `1 & (Ant f) ^ <*(All (x,p))*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 1 & (PR . n) `2 = 2 implies ( ex f being FinSequence of CQC-WFF Al st (PR . n) `1 = f ^ <*(VERUM Al)*> iff ex i being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & Ant f is_Subsequence_of Ant g & Suc f = Suc g & (PR . i) `1 = f & (PR . n) `1 = g ) ) ) & ( (PR . n) `2 = 1 & (PR . n) `2 = 3 implies ( ex f being FinSequence of CQC-WFF Al st (PR . n) `1 = f ^ <*(VERUM Al)*> iff ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & len f > 1 & len g > 1 & Ant (Ant f) = Ant (Ant g) & 'not' (Suc (Ant f)) = Suc (Ant g) & Suc f = Suc g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant (Ant f)) ^ <*(Suc f)*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 1 & (PR . n) `2 = 4 implies ( ex f being FinSequence of CQC-WFF Al st (PR . n) `1 = f ^ <*(VERUM Al)*> iff ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & len f > 1 & Ant f = Ant g & Suc (Ant f) = 'not' p & 'not' (Suc f) = Suc g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant (Ant f)) ^ <*p*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 1 & (PR . n) `2 = 5 implies ( ex f being FinSequence of CQC-WFF Al st (PR . n) `1 = f ^ <*(VERUM Al)*> iff ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & Ant f = Ant g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant f) ^ <*((Suc f) '&' (Suc g))*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 1 & (PR . n) `2 = 6 implies ( ex f being FinSequence of CQC-WFF Al st (PR . n) `1 = f ^ <*(VERUM Al)*> iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p, q being Element of CQC-WFF Al st
( 1 <= i & i < n & p '&' q = Suc f & f = (PR . i) `1 & (Ant f) ^ <*p*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 1 & (PR . n) `2 = 7 implies ( ex f being FinSequence of CQC-WFF Al st (PR . n) `1 = f ^ <*(VERUM Al)*> iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p, q being Element of CQC-WFF Al st
( 1 <= i & i < n & p '&' q = Suc f & f = (PR . i) `1 & (Ant f) ^ <*q*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 1 & (PR . n) `2 = 8 implies ( ex f being FinSequence of CQC-WFF Al st (PR . n) `1 = f ^ <*(VERUM Al)*> iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al ex x, y being bound_QC-variable of Al st
( 1 <= i & i < n & Suc f = All (x,p) & f = (PR . i) `1 & (Ant f) ^ <*(p . (x,y))*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 1 & (PR . n) `2 = 9 implies ( ex f being FinSequence of CQC-WFF Al st (PR . n) `1 = f ^ <*(VERUM Al)*> iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al ex x, y being bound_QC-variable of Al st
( 1 <= i & i < n & Suc f = p . (x,y) & not y in still_not-bound_in (Ant f) & not y in still_not-bound_in (All (x,p)) & f = (PR . i) `1 & (Ant f) ^ <*(All (x,p))*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 2 & (PR . n) `2 = 3 implies ( ex i being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & Ant f is_Subsequence_of Ant g & Suc f = Suc g & (PR . i) `1 = f & (PR . n) `1 = g ) iff ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & len f > 1 & len g > 1 & Ant (Ant f) = Ant (Ant g) & 'not' (Suc (Ant f)) = Suc (Ant g) & Suc f = Suc g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant (Ant f)) ^ <*(Suc f)*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 2 & (PR . n) `2 = 4 implies ( ex i being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & Ant f is_Subsequence_of Ant g & Suc f = Suc g & (PR . i) `1 = f & (PR . n) `1 = g ) iff ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & len f > 1 & Ant f = Ant g & Suc (Ant f) = 'not' p & 'not' (Suc f) = Suc g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant (Ant f)) ^ <*p*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 2 & (PR . n) `2 = 5 implies ( ex i being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & Ant f is_Subsequence_of Ant g & Suc f = Suc g & (PR . i) `1 = f & (PR . n) `1 = g ) iff ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & Ant f = Ant g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant f) ^ <*((Suc f) '&' (Suc g))*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 2 & (PR . n) `2 = 6 implies ( ex i being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & Ant f is_Subsequence_of Ant g & Suc f = Suc g & (PR . i) `1 = f & (PR . n) `1 = g ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p, q being Element of CQC-WFF Al st
( 1 <= i & i < n & p '&' q = Suc f & f = (PR . i) `1 & (Ant f) ^ <*p*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 2 & (PR . n) `2 = 7 implies ( ex i being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & Ant f is_Subsequence_of Ant g & Suc f = Suc g & (PR . i) `1 = f & (PR . n) `1 = g ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p, q being Element of CQC-WFF Al st
( 1 <= i & i < n & p '&' q = Suc f & f = (PR . i) `1 & (Ant f) ^ <*q*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 2 & (PR . n) `2 = 8 implies ( ex i being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & Ant f is_Subsequence_of Ant g & Suc f = Suc g & (PR . i) `1 = f & (PR . n) `1 = g ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al ex x, y being bound_QC-variable of Al st
( 1 <= i & i < n & Suc f = All (x,p) & f = (PR . i) `1 & (Ant f) ^ <*(p . (x,y))*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 2 & (PR . n) `2 = 9 implies ( ex i being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & Ant f is_Subsequence_of Ant g & Suc f = Suc g & (PR . i) `1 = f & (PR . n) `1 = g ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al ex x, y being bound_QC-variable of Al st
( 1 <= i & i < n & Suc f = p . (x,y) & not y in still_not-bound_in (Ant f) & not y in still_not-bound_in (All (x,p)) & f = (PR . i) `1 & (Ant f) ^ <*(All (x,p))*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 3 & (PR . n) `2 = 4 implies ( ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & len f > 1 & len g > 1 & Ant (Ant f) = Ant (Ant g) & 'not' (Suc (Ant f)) = Suc (Ant g) & Suc f = Suc g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant (Ant f)) ^ <*(Suc f)*> = (PR . n) `1 ) iff ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & len f > 1 & Ant f = Ant g & Suc (Ant f) = 'not' p & 'not' (Suc f) = Suc g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant (Ant f)) ^ <*p*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 3 & (PR . n) `2 = 5 implies ( ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & len f > 1 & len g > 1 & Ant (Ant f) = Ant (Ant g) & 'not' (Suc (Ant f)) = Suc (Ant g) & Suc f = Suc g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant (Ant f)) ^ <*(Suc f)*> = (PR . n) `1 ) iff ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & Ant f = Ant g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant f) ^ <*((Suc f) '&' (Suc g))*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 3 & (PR . n) `2 = 6 implies ( ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & len f > 1 & len g > 1 & Ant (Ant f) = Ant (Ant g) & 'not' (Suc (Ant f)) = Suc (Ant g) & Suc f = Suc g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant (Ant f)) ^ <*(Suc f)*> = (PR . n) `1 ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p, q being Element of CQC-WFF Al st
( 1 <= i & i < n & p '&' q = Suc f & f = (PR . i) `1 & (Ant f) ^ <*p*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 3 & (PR . n) `2 = 7 implies ( ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & len f > 1 & len g > 1 & Ant (Ant f) = Ant (Ant g) & 'not' (Suc (Ant f)) = Suc (Ant g) & Suc f = Suc g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant (Ant f)) ^ <*(Suc f)*> = (PR . n) `1 ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p, q being Element of CQC-WFF Al st
( 1 <= i & i < n & p '&' q = Suc f & f = (PR . i) `1 & (Ant f) ^ <*q*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 3 & (PR . n) `2 = 8 implies ( ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & len f > 1 & len g > 1 & Ant (Ant f) = Ant (Ant g) & 'not' (Suc (Ant f)) = Suc (Ant g) & Suc f = Suc g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant (Ant f)) ^ <*(Suc f)*> = (PR . n) `1 ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al ex x, y being bound_QC-variable of Al st
( 1 <= i & i < n & Suc f = All (x,p) & f = (PR . i) `1 & (Ant f) ^ <*(p . (x,y))*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 3 & (PR . n) `2 = 9 implies ( ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & len f > 1 & len g > 1 & Ant (Ant f) = Ant (Ant g) & 'not' (Suc (Ant f)) = Suc (Ant g) & Suc f = Suc g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant (Ant f)) ^ <*(Suc f)*> = (PR . n) `1 ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al ex x, y being bound_QC-variable of Al st
( 1 <= i & i < n & Suc f = p . (x,y) & not y in still_not-bound_in (Ant f) & not y in still_not-bound_in (All (x,p)) & f = (PR . i) `1 & (Ant f) ^ <*(All (x,p))*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 4 & (PR . n) `2 = 5 implies ( ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & len f > 1 & Ant f = Ant g & Suc (Ant f) = 'not' p & 'not' (Suc f) = Suc g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant (Ant f)) ^ <*p*> = (PR . n) `1 ) iff ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & Ant f = Ant g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant f) ^ <*((Suc f) '&' (Suc g))*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 4 & (PR . n) `2 = 6 implies ( ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & len f > 1 & Ant f = Ant g & Suc (Ant f) = 'not' p & 'not' (Suc f) = Suc g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant (Ant f)) ^ <*p*> = (PR . n) `1 ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p, q being Element of CQC-WFF Al st
( 1 <= i & i < n & p '&' q = Suc f & f = (PR . i) `1 & (Ant f) ^ <*p*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 4 & (PR . n) `2 = 7 implies ( ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & len f > 1 & Ant f = Ant g & Suc (Ant f) = 'not' p & 'not' (Suc f) = Suc g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant (Ant f)) ^ <*p*> = (PR . n) `1 ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p, q being Element of CQC-WFF Al st
( 1 <= i & i < n & p '&' q = Suc f & f = (PR . i) `1 & (Ant f) ^ <*q*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 4 & (PR . n) `2 = 8 implies ( ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & len f > 1 & Ant f = Ant g & Suc (Ant f) = 'not' p & 'not' (Suc f) = Suc g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant (Ant f)) ^ <*p*> = (PR . n) `1 ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al ex x, y being bound_QC-variable of Al st
( 1 <= i & i < n & Suc f = All (x,p) & f = (PR . i) `1 & (Ant f) ^ <*(p . (x,y))*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 4 & (PR . n) `2 = 9 implies ( ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & len f > 1 & Ant f = Ant g & Suc (Ant f) = 'not' p & 'not' (Suc f) = Suc g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant (Ant f)) ^ <*p*> = (PR . n) `1 ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al ex x, y being bound_QC-variable of Al st
( 1 <= i & i < n & Suc f = p . (x,y) & not y in still_not-bound_in (Ant f) & not y in still_not-bound_in (All (x,p)) & f = (PR . i) `1 & (Ant f) ^ <*(All (x,p))*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 5 & (PR . n) `2 = 6 implies ( ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & Ant f = Ant g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant f) ^ <*((Suc f) '&' (Suc g))*> = (PR . n) `1 ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p, q being Element of CQC-WFF Al st
( 1 <= i & i < n & p '&' q = Suc f & f = (PR . i) `1 & (Ant f) ^ <*p*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 5 & (PR . n) `2 = 7 implies ( ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & Ant f = Ant g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant f) ^ <*((Suc f) '&' (Suc g))*> = (PR . n) `1 ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p, q being Element of CQC-WFF Al st
( 1 <= i & i < n & p '&' q = Suc f & f = (PR . i) `1 & (Ant f) ^ <*q*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 5 & (PR . n) `2 = 8 implies ( ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & Ant f = Ant g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant f) ^ <*((Suc f) '&' (Suc g))*> = (PR . n) `1 ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al ex x, y being bound_QC-variable of Al st
( 1 <= i & i < n & Suc f = All (x,p) & f = (PR . i) `1 & (Ant f) ^ <*(p . (x,y))*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 5 & (PR . n) `2 = 9 implies ( ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & Ant f = Ant g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant f) ^ <*((Suc f) '&' (Suc g))*> = (PR . n) `1 ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al ex x, y being bound_QC-variable of Al st
( 1 <= i & i < n & Suc f = p . (x,y) & not y in still_not-bound_in (Ant f) & not y in still_not-bound_in (All (x,p)) & f = (PR . i) `1 & (Ant f) ^ <*(All (x,p))*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 6 & (PR . n) `2 = 7 implies ( ex i being Nat ex f being FinSequence of CQC-WFF Al ex p, q being Element of CQC-WFF Al st
( 1 <= i & i < n & p '&' q = Suc f & f = (PR . i) `1 & (Ant f) ^ <*p*> = (PR . n) `1 ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p, q being Element of CQC-WFF Al st
( 1 <= i & i < n & p '&' q = Suc f & f = (PR . i) `1 & (Ant f) ^ <*q*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 6 & (PR . n) `2 = 8 implies ( ex i being Nat ex f being FinSequence of CQC-WFF Al ex p, q being Element of CQC-WFF Al st
( 1 <= i & i < n & p '&' q = Suc f & f = (PR . i) `1 & (Ant f) ^ <*p*> = (PR . n) `1 ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al ex x, y being bound_QC-variable of Al st
( 1 <= i & i < n & Suc f = All (x,p) & f = (PR . i) `1 & (Ant f) ^ <*(p . (x,y))*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 6 & (PR . n) `2 = 9 implies ( ex i being Nat ex f being FinSequence of CQC-WFF Al ex p, q being Element of CQC-WFF Al st
( 1 <= i & i < n & p '&' q = Suc f & f = (PR . i) `1 & (Ant f) ^ <*p*> = (PR . n) `1 ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al ex x, y being bound_QC-variable of Al st
( 1 <= i & i < n & Suc f = p . (x,y) & not y in still_not-bound_in (Ant f) & not y in still_not-bound_in (All (x,p)) & f = (PR . i) `1 & (Ant f) ^ <*(All (x,p))*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 7 & (PR . n) `2 = 8 implies ( ex i being Nat ex f being FinSequence of CQC-WFF Al ex p, q being Element of CQC-WFF Al st
( 1 <= i & i < n & p '&' q = Suc f & f = (PR . i) `1 & (Ant f) ^ <*q*> = (PR . n) `1 ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al ex x, y being bound_QC-variable of Al st
( 1 <= i & i < n & Suc f = All (x,p) & f = (PR . i) `1 & (Ant f) ^ <*(p . (x,y))*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 7 & (PR . n) `2 = 9 implies ( ex i being Nat ex f being FinSequence of CQC-WFF Al ex p, q being Element of CQC-WFF Al st
( 1 <= i & i < n & p '&' q = Suc f & f = (PR . i) `1 & (Ant f) ^ <*q*> = (PR . n) `1 ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al ex x, y being bound_QC-variable of Al st
( 1 <= i & i < n & Suc f = p . (x,y) & not y in still_not-bound_in (Ant f) & not y in still_not-bound_in (All (x,p)) & f = (PR . i) `1 & (Ant f) ^ <*(All (x,p))*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 8 & (PR . n) `2 = 9 implies ( ex i being Nat ex f being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al ex x, y being bound_QC-variable of Al st
( 1 <= i & i < n & Suc f = All (x,p) & f = (PR . i) `1 & (Ant f) ^ <*(p . (x,y))*> = (PR . n) `1 ) iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al ex x, y being bound_QC-variable of Al st
( 1 <= i & i < n & Suc f = p . (x,y) & not y in still_not-bound_in (Ant f) & not y in still_not-bound_in (All (x,p)) & f = (PR . i) `1 & (Ant f) ^ <*(All (x,p))*> = (PR . n) `1 ) ) ) )
;
end;
::
deftheorem Def7 defines
is_a_correct_step CALCUL_1:def 7 :
for Al being QC-alphabet
for PR being FinSequence of [:(set_of_CQC-WFF-seq Al),Proof_Step_Kinds:]
for n being Nat holds
( ( (PR . n) `2 = 0 implies ( PR,n is_a_correct_step iff ex f being FinSequence of CQC-WFF Al st
( Suc f is_tail_of Ant f & (PR . n) `1 = f ) ) ) & ( (PR . n) `2 = 1 implies ( PR,n is_a_correct_step iff ex f being FinSequence of CQC-WFF Al st (PR . n) `1 = f ^ <*(VERUM Al)*> ) ) & ( (PR . n) `2 = 2 implies ( PR,n is_a_correct_step iff ex i being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & Ant f is_Subsequence_of Ant g & Suc f = Suc g & (PR . i) `1 = f & (PR . n) `1 = g ) ) ) & ( (PR . n) `2 = 3 implies ( PR,n is_a_correct_step iff ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & len f > 1 & len g > 1 & Ant (Ant f) = Ant (Ant g) & 'not' (Suc (Ant f)) = Suc (Ant g) & Suc f = Suc g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant (Ant f)) ^ <*(Suc f)*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 4 implies ( PR,n is_a_correct_step iff ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & len f > 1 & Ant f = Ant g & Suc (Ant f) = 'not' p & 'not' (Suc f) = Suc g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant (Ant f)) ^ <*p*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 5 implies ( PR,n is_a_correct_step iff ex i, j being Nat ex f, g being FinSequence of CQC-WFF Al st
( 1 <= i & i < n & 1 <= j & j < i & Ant f = Ant g & f = (PR . j) `1 & g = (PR . i) `1 & (Ant f) ^ <*((Suc f) '&' (Suc g))*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 6 implies ( PR,n is_a_correct_step iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p, q being Element of CQC-WFF Al st
( 1 <= i & i < n & p '&' q = Suc f & f = (PR . i) `1 & (Ant f) ^ <*p*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 7 implies ( PR,n is_a_correct_step iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p, q being Element of CQC-WFF Al st
( 1 <= i & i < n & p '&' q = Suc f & f = (PR . i) `1 & (Ant f) ^ <*q*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 8 implies ( PR,n is_a_correct_step iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al ex x, y being bound_QC-variable of Al st
( 1 <= i & i < n & Suc f = All (x,p) & f = (PR . i) `1 & (Ant f) ^ <*(p . (x,y))*> = (PR . n) `1 ) ) ) & ( (PR . n) `2 = 9 implies ( PR,n is_a_correct_step iff ex i being Nat ex f being FinSequence of CQC-WFF Al ex p being Element of CQC-WFF Al ex x, y being bound_QC-variable of Al st
( 1 <= i & i < n & Suc f = p . (x,y) & not y in still_not-bound_in (Ant f) & not y in still_not-bound_in (All (x,p)) & f = (PR . i) `1 & (Ant f) ^ <*(All (x,p))*> = (PR . n) `1 ) ) ) );
Lm3:
for Al being QC-alphabet
for n being Nat
for PR being FinSequence of [:(set_of_CQC-WFF-seq Al),Proof_Step_Kinds:] st 1 <= n & n <= len PR holds
(PR . n) `1 is FinSequence of CQC-WFF Al