Lm1:
for f being Function
for C, D, c, d being object st C <> D holds
((f +* (C .--> c)) +* (D .--> d)) . C = c
Lm2:
for B, C, D, b, c, d being object
for h being Function st h = (B,C,D) --> (b,c,d) holds
rng h = {(h . B),(h . C),(h . D)}
theorem
for
B,
C,
D,
b,
c,
d being
object holds
dom ((B,C,D) --> (b,c,d)) = {B,C,D} by FUNCT_4:128;
theorem
for
B,
C,
D,
b,
c,
d being
object for
h being
Function st
h = (
B,
C,
D)
--> (
b,
c,
d) holds
rng h = {(h . B),(h . C),(h . D)} by Lm2;
theorem Th17:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D being
a_partition of
Y for
h being
Function for
A9,
B9,
C9,
D9 being
object st
G = {A,B,C,D} &
h = (((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (A .--> A9) holds
rng h = {(h . A),(h . B),(h . C),(h . D)}
theorem
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D being
a_partition of
Y for
z,
u being
Element of
Y st
G is
independent &
G = {A,B,C,D} &
A <> B &
A <> C &
A <> D &
B <> C &
B <> D &
C <> D &
EqClass (
z,
(C '/\' D))
= EqClass (
u,
(C '/\' D)) holds
EqClass (
u,
(CompF (A,G)))
meets EqClass (
z,
(CompF (B,G)))
theorem
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C being
a_partition of
Y for
z,
u being
Element of
Y st
G is
independent &
G = {A,B,C} &
A <> B &
B <> C &
C <> A &
EqClass (
z,
C)
= EqClass (
u,
C) holds
EqClass (
u,
(CompF (A,G)))
meets EqClass (
z,
(CompF (B,G)))
theorem Th27:
for
A,
B,
C,
D,
E being
set for
h being
Function for
A9,
B9,
C9,
D9,
E9 being
set st
h = ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (A .--> A9) holds
dom h = {A,B,C,D,E}
theorem Th28:
for
A,
B,
C,
D,
E being
set for
h being
Function for
A9,
B9,
C9,
D9,
E9 being
set st
h = ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (A .--> A9) holds
rng h = {(h . A),(h . B),(h . C),(h . D),(h . E)}
theorem
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E being
a_partition of
Y for
z,
u being
Element of
Y for
h being
Function st
G is
independent &
G = {A,B,C,D,E} &
A <> B &
A <> C &
A <> D &
A <> E &
B <> C &
B <> D &
B <> E &
C <> D &
C <> E &
D <> E holds
EqClass (
u,
(((B '/\' C) '/\' D) '/\' E))
meets EqClass (
z,
A)
theorem
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E being
a_partition of
Y for
z,
u being
Element of
Y st
G is
independent &
G = {A,B,C,D,E} &
A <> B &
A <> C &
A <> D &
A <> E &
B <> C &
B <> D &
B <> E &
C <> D &
C <> E &
D <> E &
EqClass (
z,
((C '/\' D) '/\' E))
= EqClass (
u,
((C '/\' D) '/\' E)) holds
EqClass (
u,
(CompF (A,G)))
meets EqClass (
z,
(CompF (B,G)))
theorem Th31:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F being
a_partition of
Y st
G = {A,B,C,D,E,F} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
B <> C &
B <> D &
B <> E &
B <> F &
C <> D &
C <> E &
C <> F &
D <> E &
D <> F &
E <> F holds
CompF (
A,
G)
= (((B '/\' C) '/\' D) '/\' E) '/\' F
theorem Th32:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F being
a_partition of
Y st
G = {A,B,C,D,E,F} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
B <> C &
B <> D &
B <> E &
B <> F &
C <> D &
C <> E &
C <> F &
D <> E &
D <> F &
E <> F holds
CompF (
B,
G)
= (((A '/\' C) '/\' D) '/\' E) '/\' F
theorem Th33:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F being
a_partition of
Y st
G = {A,B,C,D,E,F} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
B <> C &
B <> D &
B <> E &
B <> F &
C <> D &
C <> E &
C <> F &
D <> E &
D <> F &
E <> F holds
CompF (
C,
G)
= (((A '/\' B) '/\' D) '/\' E) '/\' F
theorem Th34:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F being
a_partition of
Y st
G = {A,B,C,D,E,F} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
B <> C &
B <> D &
B <> E &
B <> F &
C <> D &
C <> E &
C <> F &
D <> E &
D <> F &
E <> F holds
CompF (
D,
G)
= (((A '/\' B) '/\' C) '/\' E) '/\' F
theorem Th35:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F being
a_partition of
Y st
G = {A,B,C,D,E,F} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
B <> C &
B <> D &
B <> E &
B <> F &
C <> D &
C <> E &
C <> F &
D <> E &
D <> F &
E <> F holds
CompF (
E,
G)
= (((A '/\' B) '/\' C) '/\' D) '/\' F
theorem
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F being
a_partition of
Y st
G = {A,B,C,D,E,F} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
B <> C &
B <> D &
B <> E &
B <> F &
C <> D &
C <> E &
C <> F &
D <> E &
D <> F &
E <> F holds
CompF (
F,
G)
= (((A '/\' B) '/\' C) '/\' D) '/\' E
theorem Th37:
for
A,
B,
C,
D,
E,
F being
set for
h being
Function for
A9,
B9,
C9,
D9,
E9,
F9 being
set st
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
B <> C &
B <> D &
B <> E &
B <> F &
C <> D &
C <> E &
C <> F &
D <> E &
D <> F &
E <> F &
h = (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (A .--> A9) holds
(
h . A = A9 &
h . B = B9 &
h . C = C9 &
h . D = D9 &
h . E = E9 &
h . F = F9 )
theorem Th38:
for
A,
B,
C,
D,
E,
F being
set for
h being
Function for
A9,
B9,
C9,
D9,
E9,
F9 being
set st
h = (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (A .--> A9) holds
dom h = {A,B,C,D,E,F}
theorem Th39:
for
A,
B,
C,
D,
E,
F being
set for
h being
Function for
A9,
B9,
C9,
D9,
E9,
F9 being
set st
h = (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (A .--> A9) holds
rng h = {(h . A),(h . B),(h . C),(h . D),(h . E),(h . F)}
theorem
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F being
a_partition of
Y for
z,
u being
Element of
Y for
h being
Function st
G is
independent &
G = {A,B,C,D,E,F} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
B <> C &
B <> D &
B <> E &
B <> F &
C <> D &
C <> E &
C <> F &
D <> E &
D <> F &
E <> F holds
EqClass (
u,
((((B '/\' C) '/\' D) '/\' E) '/\' F))
meets EqClass (
z,
A)
theorem
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F being
a_partition of
Y for
z,
u being
Element of
Y for
h being
Function st
G is
independent &
G = {A,B,C,D,E,F} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
B <> C &
B <> D &
B <> E &
B <> F &
C <> D &
C <> E &
C <> F &
D <> E &
D <> F &
E <> F &
EqClass (
z,
(((C '/\' D) '/\' E) '/\' F))
= EqClass (
u,
(((C '/\' D) '/\' E) '/\' F)) holds
EqClass (
u,
(CompF (A,G)))
meets EqClass (
z,
(CompF (B,G)))
theorem Th42:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J being
a_partition of
Y st
G = {A,B,C,D,E,F,J} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
C <> D &
C <> E &
C <> F &
C <> J &
D <> E &
D <> F &
D <> J &
E <> F &
E <> J &
F <> J holds
CompF (
A,
G)
= ((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J
theorem Th43:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J being
a_partition of
Y st
G = {A,B,C,D,E,F,J} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
C <> D &
C <> E &
C <> F &
C <> J &
D <> E &
D <> F &
D <> J &
E <> F &
E <> J &
F <> J holds
CompF (
B,
G)
= ((((A '/\' C) '/\' D) '/\' E) '/\' F) '/\' J
theorem Th44:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J being
a_partition of
Y st
G = {A,B,C,D,E,F,J} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
C <> D &
C <> E &
C <> F &
C <> J &
D <> E &
D <> F &
D <> J &
E <> F &
E <> J &
F <> J holds
CompF (
C,
G)
= ((((A '/\' B) '/\' D) '/\' E) '/\' F) '/\' J
theorem Th45:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J being
a_partition of
Y st
G = {A,B,C,D,E,F,J} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
C <> D &
C <> E &
C <> F &
C <> J &
D <> E &
D <> F &
D <> J &
E <> F &
E <> J &
F <> J holds
CompF (
D,
G)
= ((((A '/\' B) '/\' C) '/\' E) '/\' F) '/\' J
theorem Th46:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J being
a_partition of
Y st
G = {A,B,C,D,E,F,J} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
C <> D &
C <> E &
C <> F &
C <> J &
D <> E &
D <> F &
D <> J &
E <> F &
E <> J &
F <> J holds
CompF (
E,
G)
= ((((A '/\' B) '/\' C) '/\' D) '/\' F) '/\' J
theorem Th47:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J being
a_partition of
Y st
G = {A,B,C,D,E,F,J} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
C <> D &
C <> E &
C <> F &
C <> J &
D <> E &
D <> F &
D <> J &
E <> F &
E <> J &
F <> J holds
CompF (
F,
G)
= ((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' J
theorem
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J being
a_partition of
Y st
G = {A,B,C,D,E,F,J} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
C <> D &
C <> E &
C <> F &
C <> J &
D <> E &
D <> F &
D <> J &
E <> F &
E <> J &
F <> J holds
CompF (
J,
G)
= ((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F
theorem Th49:
for
A,
B,
C,
D,
E,
F,
J being
set for
h being
Function for
A9,
B9,
C9,
D9,
E9,
F9,
J9 being
set st
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
C <> D &
C <> E &
C <> F &
C <> J &
D <> E &
D <> F &
D <> J &
E <> F &
E <> J &
F <> J &
h = ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (A .--> A9) holds
(
h . A = A9 &
h . B = B9 &
h . C = C9 &
h . D = D9 &
h . E = E9 &
h . F = F9 &
h . J = J9 )
theorem Th50:
for
A,
B,
C,
D,
E,
F,
J being
set for
h being
Function for
A9,
B9,
C9,
D9,
E9,
F9,
J9 being
set st
h = ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (A .--> A9) holds
dom h = {A,B,C,D,E,F,J}
theorem Th51:
for
A,
B,
C,
D,
E,
F,
J being
set for
h being
Function for
A9,
B9,
C9,
D9,
E9,
F9,
J9 being
set st
h = ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (A .--> A9) holds
rng h = {(h . A),(h . B),(h . C),(h . D),(h . E),(h . F),(h . J)}
theorem
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J being
a_partition of
Y for
z,
u being
Element of
Y st
G is
independent &
G = {A,B,C,D,E,F,J} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
C <> D &
C <> E &
C <> F &
C <> J &
D <> E &
D <> F &
D <> J &
E <> F &
E <> J &
F <> J holds
EqClass (
u,
(((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J))
meets EqClass (
z,
A)
theorem
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J being
a_partition of
Y for
z,
u being
Element of
Y st
G is
independent &
G = {A,B,C,D,E,F,J} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
C <> D &
C <> E &
C <> F &
C <> J &
D <> E &
D <> F &
D <> J &
E <> F &
E <> J &
F <> J &
EqClass (
z,
((((C '/\' D) '/\' E) '/\' F) '/\' J))
= EqClass (
u,
((((C '/\' D) '/\' E) '/\' F) '/\' J)) holds
EqClass (
u,
(CompF (A,G)))
meets EqClass (
z,
(CompF (B,G)))
theorem Th54:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
D <> E &
D <> F &
D <> J &
D <> M &
E <> F &
E <> J &
E <> M &
F <> J &
F <> M &
J <> M holds
CompF (
A,
G)
= (((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M
theorem Th55:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
D <> E &
D <> F &
D <> J &
D <> M &
E <> F &
E <> J &
E <> M &
F <> J &
F <> M &
J <> M holds
CompF (
B,
G)
= (((((A '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M
theorem Th56:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
D <> E &
D <> F &
D <> J &
D <> M &
E <> F &
E <> J &
E <> M &
F <> J &
F <> M &
J <> M holds
CompF (
C,
G)
= (((((A '/\' B) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M
theorem Th57:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
D <> E &
D <> F &
D <> J &
D <> M &
E <> F &
E <> J &
E <> M &
F <> J &
F <> M &
J <> M holds
CompF (
D,
G)
= (((((A '/\' B) '/\' C) '/\' E) '/\' F) '/\' J) '/\' M
theorem Th58:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
D <> E &
D <> F &
D <> J &
D <> M &
E <> F &
E <> J &
E <> M &
F <> J &
F <> M &
J <> M holds
CompF (
E,
G)
= (((((A '/\' B) '/\' C) '/\' D) '/\' F) '/\' J) '/\' M
theorem Th59:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
D <> E &
D <> F &
D <> J &
D <> M &
E <> F &
E <> J &
E <> M &
F <> J &
F <> M &
J <> M holds
CompF (
F,
G)
= (((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' J) '/\' M
theorem Th60:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
D <> E &
D <> F &
D <> J &
D <> M &
E <> F &
E <> J &
E <> M &
F <> J &
F <> M &
J <> M holds
CompF (
J,
G)
= (((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' M
theorem
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
D <> E &
D <> F &
D <> J &
D <> M &
E <> F &
E <> J &
E <> M &
F <> J &
F <> M &
J <> M holds
CompF (
M,
G)
= (((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' J
theorem Th62:
for
A,
B,
C,
D,
E,
F,
J,
M being
set for
h being
Function for
A9,
B9,
C9,
D9,
E9,
F9,
J9,
M9 being
set st
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
D <> E &
D <> F &
D <> J &
D <> M &
E <> F &
E <> J &
E <> M &
F <> J &
F <> M &
J <> M &
h = (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (A .--> A9) holds
(
h . B = B9 &
h . C = C9 &
h . D = D9 &
h . E = E9 &
h . F = F9 &
h . J = J9 )
theorem Th63:
for
A,
B,
C,
D,
E,
F,
J,
M being
set for
h being
Function for
A9,
B9,
C9,
D9,
E9,
F9,
J9,
M9 being
set st
h = (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (A .--> A9) holds
dom h = {A,B,C,D,E,F,J,M}
theorem Th64:
for
A,
B,
C,
D,
E,
F,
J,
M being
set for
h being
Function for
A9,
B9,
C9,
D9,
E9,
F9,
J9,
M9 being
set st
h = (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (A .--> A9) holds
rng h = {(h . A),(h . B),(h . C),(h . D),(h . E),(h . F),(h . J),(h . M)}
theorem
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M being
a_partition of
Y for
z,
u being
Element of
Y st
G is
independent &
G = {A,B,C,D,E,F,J,M} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
D <> E &
D <> F &
D <> J &
D <> M &
E <> F &
E <> J &
E <> M &
F <> J &
F <> M &
J <> M holds
(EqClass (u,((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M))) /\ (EqClass (z,A)) <> {}
theorem
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M being
a_partition of
Y for
z,
u being
Element of
Y st
G is
independent &
G = {A,B,C,D,E,F,J,M} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
D <> E &
D <> F &
D <> J &
D <> M &
E <> F &
E <> J &
E <> M &
F <> J &
F <> M &
J <> M &
EqClass (
z,
(((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M))
= EqClass (
u,
(((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M)) holds
EqClass (
u,
(CompF (A,G)))
meets EqClass (
z,
(CompF (B,G)))
Lm3:
for x1, x2, x3, x4, x5, x6, x7, x8, x9 being set holds {x1,x2,x3,x4,x5,x6,x7,x8,x9} = {x1,x2,x3,x4} \/ {x5,x6,x7,x8,x9}
theorem Th67:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M,
N being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M,N} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
A <> N &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
B <> N &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
C <> N &
D <> E &
D <> F &
D <> J &
D <> M &
D <> N &
E <> F &
E <> J &
E <> M &
E <> N &
F <> J &
F <> M &
F <> N &
J <> M &
J <> N &
M <> N holds
CompF (
A,
G)
= ((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N
theorem Th68:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M,
N being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M,N} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
A <> N &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
B <> N &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
C <> N &
D <> E &
D <> F &
D <> J &
D <> M &
D <> N &
E <> F &
E <> J &
E <> M &
E <> N &
F <> J &
F <> M &
F <> N &
J <> M &
J <> N &
M <> N holds
CompF (
B,
G)
= ((((((A '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N
theorem Th69:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M,
N being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M,N} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
A <> N &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
B <> N &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
C <> N &
D <> E &
D <> F &
D <> J &
D <> M &
D <> N &
E <> F &
E <> J &
E <> M &
E <> N &
F <> J &
F <> M &
F <> N &
J <> M &
J <> N &
M <> N holds
CompF (
C,
G)
= ((((((A '/\' B) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N
theorem Th70:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M,
N being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M,N} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
A <> N &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
B <> N &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
C <> N &
D <> E &
D <> F &
D <> J &
D <> M &
D <> N &
E <> F &
E <> J &
E <> M &
E <> N &
F <> J &
F <> M &
F <> N &
J <> M &
J <> N &
M <> N holds
CompF (
D,
G)
= ((((((A '/\' B) '/\' C) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N
theorem Th71:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M,
N being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M,N} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
A <> N &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
B <> N &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
C <> N &
D <> E &
D <> F &
D <> J &
D <> M &
D <> N &
E <> F &
E <> J &
E <> M &
E <> N &
F <> J &
F <> M &
F <> N &
J <> M &
J <> N &
M <> N holds
CompF (
E,
G)
= ((((((A '/\' B) '/\' C) '/\' D) '/\' F) '/\' J) '/\' M) '/\' N
theorem Th72:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M,
N being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M,N} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
A <> N &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
B <> N &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
C <> N &
D <> E &
D <> F &
D <> J &
D <> M &
D <> N &
E <> F &
E <> J &
E <> M &
E <> N &
F <> J &
F <> M &
F <> N &
J <> M &
J <> N &
M <> N holds
CompF (
F,
G)
= ((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' J) '/\' M) '/\' N
theorem Th73:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M,
N being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M,N} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
A <> N &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
B <> N &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
C <> N &
D <> E &
D <> F &
D <> J &
D <> M &
D <> N &
E <> F &
E <> J &
E <> M &
E <> N &
F <> J &
F <> M &
F <> N &
J <> M &
J <> N &
M <> N holds
CompF (
J,
G)
= ((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' M) '/\' N
theorem Th74:
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M,
N being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M,N} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
A <> N &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
B <> N &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
C <> N &
D <> E &
D <> F &
D <> J &
D <> M &
D <> N &
E <> F &
E <> J &
E <> M &
E <> N &
F <> J &
F <> M &
F <> N &
J <> M &
J <> N &
M <> N holds
CompF (
M,
G)
= ((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' N
theorem
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M,
N being
a_partition of
Y st
G = {A,B,C,D,E,F,J,M,N} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
A <> N &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
B <> N &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
C <> N &
D <> E &
D <> F &
D <> J &
D <> M &
D <> N &
E <> F &
E <> J &
E <> M &
E <> N &
F <> J &
F <> M &
F <> N &
J <> M &
J <> N &
M <> N holds
CompF (
N,
G)
= ((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M
theorem Th76:
for
A,
B,
C,
D,
E,
F,
J,
M,
N being
set for
h being
Function for
A9,
B9,
C9,
D9,
E9,
F9,
J9,
M9,
N9 being
set st
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
A <> N &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
B <> N &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
C <> N &
D <> E &
D <> F &
D <> J &
D <> M &
D <> N &
E <> F &
E <> J &
E <> M &
E <> N &
F <> J &
F <> M &
F <> N &
J <> M &
J <> N &
M <> N &
h = ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) +* (A .--> A9) holds
(
h . A = A9 &
h . B = B9 &
h . C = C9 &
h . D = D9 &
h . E = E9 &
h . F = F9 &
h . J = J9 &
h . M = M9 &
h . N = N9 )
theorem Th77:
for
A,
B,
C,
D,
E,
F,
J,
M,
N being
set for
h being
Function for
A9,
B9,
C9,
D9,
E9,
F9,
J9,
M9,
N9 being
set st
h = ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) +* (A .--> A9) holds
dom h = {A,B,C,D,E,F,J,M,N}
theorem Th78:
for
A,
B,
C,
D,
E,
F,
J,
M,
N being
set for
h being
Function for
A9,
B9,
C9,
D9,
E9,
F9,
J9,
M9,
N9 being
set st
h = ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) +* (A .--> A9) holds
rng h = {(h . A),(h . B),(h . C),(h . D),(h . E),(h . F),(h . J),(h . M),(h . N)}
theorem
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M,
N being
a_partition of
Y for
z,
u being
Element of
Y st
G is
independent &
G = {A,B,C,D,E,F,J,M,N} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
A <> N &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
B <> N &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
C <> N &
D <> E &
D <> F &
D <> J &
D <> M &
D <> N &
E <> F &
E <> J &
E <> M &
E <> N &
F <> J &
F <> M &
F <> N &
J <> M &
J <> N &
M <> N holds
(EqClass (u,(((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N))) /\ (EqClass (z,A)) <> {}
theorem
for
Y being non
empty set for
G being
Subset of
(PARTITIONS Y) for
A,
B,
C,
D,
E,
F,
J,
M,
N being
a_partition of
Y for
z,
u being
Element of
Y st
G is
independent &
G = {A,B,C,D,E,F,J,M,N} &
A <> B &
A <> C &
A <> D &
A <> E &
A <> F &
A <> J &
A <> M &
A <> N &
B <> C &
B <> D &
B <> E &
B <> F &
B <> J &
B <> M &
B <> N &
C <> D &
C <> E &
C <> F &
C <> J &
C <> M &
C <> N &
D <> E &
D <> F &
D <> J &
D <> M &
D <> N &
E <> F &
E <> J &
E <> M &
E <> N &
F <> J &
F <> M &
F <> N &
J <> M &
J <> N &
M <> N &
EqClass (
z,
((((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N))
= EqClass (
u,
((((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N)) holds
EqClass (
u,
(CompF (A,G)))
meets EqClass (
z,
(CompF (B,G)))