theorem Th1:
for
m being
Nat st
m > 0 holds
m * 2
>= m + 1
theorem Th4:
for
k,
m,
l being
Nat st
k <= l &
l <= m & not
k = l holds
(
k + 1
<= l &
l <= m )
theorem Th8:
for
k,
l,
m being
Nat st
l + m <= k - 1 holds
(
l < k &
m < k )
Lm1:
for n being non zero Nat
for k, l being Nat st k mod n = l mod n & k > l holds
ex s being Integer st k = l + (s * n)
Lm2:
for n being non zero Nat
for k, l being Nat st k mod n = l mod n holds
ex s being Integer st k = l + (s * n)
Lm3:
for n being non zero Nat
for k, l, m being Nat st m < n & k mod (2 to_power n) = l mod (2 to_power n) holds
(k div (2 to_power m)) mod 2 = (l div (2 to_power m)) mod 2
Lm4:
for n being non zero Nat
for h, i being Integer st h mod (2 to_power n) = i mod (2 to_power n) holds
((2 to_power (MajP (n,|.h.|))) + h) mod (2 to_power n) = ((2 to_power (MajP (n,|.i.|))) + i) mod (2 to_power n)
Lm5:
for n being non zero Nat
for h, i being Integer st h >= 0 & i >= 0 & h mod (2 to_power n) = i mod (2 to_power n) holds
2sComplement (n,h) = 2sComplement (n,i)
Lm6:
for n being non zero Nat
for h, i being Integer st h < 0 & i < 0 & h mod (2 to_power n) = i mod (2 to_power n) holds
2sComplement (n,h) = 2sComplement (n,i)