Lm1:
for k being Element of NAT
for N being with_zero set
for S being non empty with_non-empty_values IC-Ins-separated AMI-Struct over N holds k <= k,S
set III = {[1,0,0],[0,0,0]};
Lm2:
for N being with_zero set
for i being Instruction of (STC N)
for s being State of (STC N) st InsCode i = 1 holds
IC (Exec (i,s)) = (IC s) + 1
Lm3:
for z being Nat
for N being with_zero set
for l being Element of NAT
for i being Element of the InstructionsF of (STC N) st l = z & InsCode i = 1 holds
NIC (i,l) = {(z + 1)}
Lm4:
now for N being with_zero set
for S being non empty with_non-empty_values IC-Ins-separated halting weakly_standard AMI-Struct over N holds
( ((il. (S,0)) .--> (halt S)) . (LastLoc ((il. (S,0)) .--> (halt S))) = halt S & ( for l being Element of NAT st ((il. (S,0)) .--> (halt S)) . l = halt S & l in dom ((il. (S,0)) .--> (halt S)) holds
l = LastLoc ((il. (S,0)) .--> (halt S)) ) )
let N be
with_zero set ;
for S being non empty with_non-empty_values IC-Ins-separated halting weakly_standard AMI-Struct over N holds
( ((il. (S,0)) .--> (halt S)) . (LastLoc ((il. (S,0)) .--> (halt S))) = halt S & ( for l being Element of NAT st ((il. (S,0)) .--> (halt S)) . l = halt S & l in dom ((il. (S,0)) .--> (halt S)) holds
l = LastLoc ((il. (S,0)) .--> (halt S)) ) )let S be non
empty with_non-empty_values IC-Ins-separated halting weakly_standard AMI-Struct over
N;
( ((il. (S,0)) .--> (halt S)) . (LastLoc ((il. (S,0)) .--> (halt S))) = halt S & ( for l being Element of NAT st ((il. (S,0)) .--> (halt S)) . l = halt S & l in dom ((il. (S,0)) .--> (halt S)) holds
l = LastLoc ((il. (S,0)) .--> (halt S)) ) )set F =
(il. (S,0)) .--> (halt S);
A1:
card (dom ((il. (S,0)) .--> (halt S))) = 1
by CARD_1:30;
(il. (S,0)) .--> (halt S) is
NAT -defined the
InstructionsF of
S -valued finite lower Function
by Th25;
then A2:
LastLoc ((il. (S,0)) .--> (halt S)) =
il. (
S,
((card ((il. (S,0)) .--> (halt S))) -' 1))
by Th32
.=
il. (
S,
((card (dom ((il. (S,0)) .--> (halt S)))) -' 1))
by CARD_1:62
.=
il. (
S,
0)
by A1, XREAL_1:232
;
hence
((il. (S,0)) .--> (halt S)) . (LastLoc ((il. (S,0)) .--> (halt S))) = halt S
by FUNCOP_1:72;
for l being Element of NAT st ((il. (S,0)) .--> (halt S)) . l = halt S & l in dom ((il. (S,0)) .--> (halt S)) holds
l = LastLoc ((il. (S,0)) .--> (halt S))let l be
Element of
NAT ;
( ((il. (S,0)) .--> (halt S)) . l = halt S & l in dom ((il. (S,0)) .--> (halt S)) implies l = LastLoc ((il. (S,0)) .--> (halt S)) )assume
((il. (S,0)) .--> (halt S)) . l = halt S
;
( l in dom ((il. (S,0)) .--> (halt S)) implies l = LastLoc ((il. (S,0)) .--> (halt S)) )assume
l in dom ((il. (S,0)) .--> (halt S))
;
l = LastLoc ((il. (S,0)) .--> (halt S))hence
l = LastLoc ((il. (S,0)) .--> (halt S))
by A2, TARSKI:def 1;
verum
end;