Lm1:
for AFV being WeakAffVect
for a, b, c being Element of AFV st a,b '||' b,c & a <> c holds
a,b // b,c
Lm2:
for AFV being WeakAffVect
for a, b being Element of AFV holds
( a,b // b,a iff ex p, q being Element of AFV st
( a,b '||' p,q & a,p '||' p,b & a,q '||' q,b ) )
Lm3:
for AFV being WeakAffVect
for a, b, c, d being Element of AFV st a,b '||' c,d holds
b,a '||' c,d
Lm4:
for AFV being WeakAffVect
for a, b being Element of AFV holds a,b '||' b,a
Lm5:
for AFV being WeakAffVect
for a, b, p being Element of AFV st a,b '||' p,p holds
a = b
Lm6:
for AFV being WeakAffVect
for a, b, c, d, p, q being Element of AFV st a,b '||' p,q & c,d '||' p,q holds
a,b '||' c,d
Lm7:
for AFV being WeakAffVect
for a, c being Element of AFV ex b being Element of AFV st a,b '||' b,c
Lm8:
for AFV being WeakAffVect
for a, a9, b, b9, p being Element of AFV st a <> a9 & b <> b9 & p,a '||' p,a9 & p,b '||' p,b9 holds
a,b '||' a9,b9
Lm9:
for AFV being WeakAffVect
for a, b being Element of AFV holds
( a = b or ex c being Element of AFV st
( ( a <> c & a,b '||' b,c ) or ex p, p9 being Element of AFV st
( p <> p9 & a,b '||' p,p9 & a,p '||' p,b & a,p9 '||' p9,b ) ) )
Lm10:
for AFV being WeakAffVect
for a, b, b9, p, p9, c being Element of AFV st a,b '||' b,c & b,b9 '||' p,p9 & b,p '||' p,b9 & b,p9 '||' p9,b9 holds
a,b9 '||' b9,c
Lm11:
for AFV being WeakAffVect
for a, b, b9, c being Element of AFV st a <> c & b <> b9 & a,b '||' b,c & a,b9 '||' b9,c holds
ex p, p9 being Element of AFV st
( p <> p9 & b,b9 '||' p,p9 & b,p '||' p,b9 & b,p9 '||' p9,b9 )
Lm12:
for AFV being WeakAffVect
for a, b, c, p, p9, q, q9 being Element of AFV st a,b '||' p,p9 & a,c '||' q,q9 & a,p '||' p,b & a,q '||' q,c & a,p9 '||' p9,b & a,q9 '||' q9,c holds
ex r, r9 being Element of AFV st
( b,c '||' r,r9 & b,r '||' r,c & b,r9 '||' r9,c )
set AFV0 = the WeakAffVect;
set X = the carrier of the WeakAffVect;
set XX = [: the carrier of the WeakAffVect, the carrier of the WeakAffVect:];
defpred S1[ object , object ] means ex a, b, c, d being Element of the carrier of the WeakAffVect st
( $1 = [a,b] & $2 = [c,d] & a,b '||' c,d );
consider P being Relation of [: the carrier of the WeakAffVect, the carrier of the WeakAffVect:],[: the carrier of the WeakAffVect, the carrier of the WeakAffVect:] such that
Lm13:
for x, y being object holds
( [x,y] in P iff ( x in [: the carrier of the WeakAffVect, the carrier of the WeakAffVect:] & y in [: the carrier of the WeakAffVect, the carrier of the WeakAffVect:] & S1[x,y] ) )
from RELSET_1:sch 1();
Lm14:
for a, b, c, d being Element of the carrier of the WeakAffVect holds
( [[a,b],[c,d]] in P iff a,b '||' c,d )
set WAS = AffinStruct(# the carrier of the WeakAffVect,P #);
Lm15:
for a, b, c, d being Element of the WeakAffVect
for a9, b9, c9, d9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a = a9 & b = b9 & c = c9 & d = d9 holds
( a,b '||' c,d iff a9,b9 // c9,d9 )
Lm16:
now ( ex a9, b9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a9 <> b9 & ( for a9, b9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) holds a9,b9 // b9,a9 ) & ( for a9, b9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a9,b9 // a9,a9 holds
a9 = b9 ) & ( for a, b, c, d, p, q being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // p,q & c,d // p,q holds
a,b // c,d ) & ( for a, c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) ex b being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // b,c ) & ( for a, a9, b, b9, p being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a <> a9 & b <> b9 & p,a // p,a9 & p,b // p,b9 holds
a,b // a9,b9 ) & ( for a, b being Element of AffinStruct(# the carrier of the WeakAffVect,P #) holds
( a = b or ex c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( ( a <> c & a,b // b,c ) or ex p, p9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( p <> p9 & a,b // p,p9 & a,p // p,b & a,p9 // p9,b ) ) ) ) & ( for a, b, b9, p, p9, c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // b,c & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 holds
a,b9 // b9,c ) & ( for a, b, b9, c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a <> c & b <> b9 & a,b // b,c & a,b9 // b9,c holds
ex p, p9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( p <> p9 & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 ) ) & ( for a, b, c, p, p9, q, q9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // p,p9 & a,c // q,q9 & a,p // p,b & a,q // q,c & a,p9 // p9,b & a,q9 // q9,c holds
ex r, r9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( b,c // r,r9 & b,r // r,c & b,r9 // r9,c ) ) )
thus
ex
a9,
b9 being
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) st
a9 <> b9
by STRUCT_0:def 10;
( ( for a9, b9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) holds a9,b9 // b9,a9 ) & ( for a9, b9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a9,b9 // a9,a9 holds
a9 = b9 ) & ( for a, b, c, d, p, q being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // p,q & c,d // p,q holds
a,b // c,d ) & ( for a, c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) ex b being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // b,c ) & ( for a, a9, b, b9, p being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a <> a9 & b <> b9 & p,a // p,a9 & p,b // p,b9 holds
a,b // a9,b9 ) & ( for a, b being Element of AffinStruct(# the carrier of the WeakAffVect,P #) holds
( a = b or ex c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( ( a <> c & a,b // b,c ) or ex p, p9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( p <> p9 & a,b // p,p9 & a,p // p,b & a,p9 // p9,b ) ) ) ) & ( for a, b, b9, p, p9, c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // b,c & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 holds
a,b9 // b9,c ) & ( for a, b, b9, c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a <> c & b <> b9 & a,b // b,c & a,b9 // b9,c holds
ex p, p9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( p <> p9 & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 ) ) & ( for a, b, c, p, p9, q, q9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // p,p9 & a,c // q,q9 & a,p // p,b & a,q // q,c & a,p9 // p9,b & a,q9 // q9,c holds
ex r, r9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( b,c // r,r9 & b,r // r,c & b,r9 // r9,c ) ) )thus
for
a9,
b9 being
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) holds
a9,
b9 // b9,
a9
( ( for a9, b9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a9,b9 // a9,a9 holds
a9 = b9 ) & ( for a, b, c, d, p, q being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // p,q & c,d // p,q holds
a,b // c,d ) & ( for a, c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) ex b being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // b,c ) & ( for a, a9, b, b9, p being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a <> a9 & b <> b9 & p,a // p,a9 & p,b // p,b9 holds
a,b // a9,b9 ) & ( for a, b being Element of AffinStruct(# the carrier of the WeakAffVect,P #) holds
( a = b or ex c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( ( a <> c & a,b // b,c ) or ex p, p9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( p <> p9 & a,b // p,p9 & a,p // p,b & a,p9 // p9,b ) ) ) ) & ( for a, b, b9, p, p9, c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // b,c & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 holds
a,b9 // b9,c ) & ( for a, b, b9, c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a <> c & b <> b9 & a,b // b,c & a,b9 // b9,c holds
ex p, p9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( p <> p9 & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 ) ) & ( for a, b, c, p, p9, q, q9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // p,p9 & a,c // q,q9 & a,p // p,b & a,q // q,c & a,p9 // p9,b & a,q9 // q9,c holds
ex r, r9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( b,c // r,r9 & b,r // r,c & b,r9 // r9,c ) ) )
thus
for
a9,
b9 being
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) st
a9,
b9 // a9,
a9 holds
a9 = b9
( ( for a, b, c, d, p, q being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // p,q & c,d // p,q holds
a,b // c,d ) & ( for a, c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) ex b being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // b,c ) & ( for a, a9, b, b9, p being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a <> a9 & b <> b9 & p,a // p,a9 & p,b // p,b9 holds
a,b // a9,b9 ) & ( for a, b being Element of AffinStruct(# the carrier of the WeakAffVect,P #) holds
( a = b or ex c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( ( a <> c & a,b // b,c ) or ex p, p9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( p <> p9 & a,b // p,p9 & a,p // p,b & a,p9 // p9,b ) ) ) ) & ( for a, b, b9, p, p9, c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // b,c & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 holds
a,b9 // b9,c ) & ( for a, b, b9, c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a <> c & b <> b9 & a,b // b,c & a,b9 // b9,c holds
ex p, p9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( p <> p9 & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 ) ) & ( for a, b, c, p, p9, q, q9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // p,p9 & a,c // q,q9 & a,p // p,b & a,q // q,c & a,p9 // p9,b & a,q9 // q9,c holds
ex r, r9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( b,c // r,r9 & b,r // r,c & b,r9 // r9,c ) ) )
proof
let a9,
b9 be
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #);
( a9,b9 // a9,a9 implies a9 = b9 )
assume A1:
a9,
b9 // a9,
a9
;
a9 = b9
reconsider a =
a9,
b =
b9 as
Element of the
WeakAffVect ;
a,
b '||' a,
a
by A1, Lm15;
hence
a9 = b9
by Lm5;
verum
end;
thus
for
a,
b,
c,
d,
p,
q being
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) st
a,
b // p,
q &
c,
d // p,
q holds
a,
b // c,
d
( ( for a, c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) ex b being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // b,c ) & ( for a, a9, b, b9, p being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a <> a9 & b <> b9 & p,a // p,a9 & p,b // p,b9 holds
a,b // a9,b9 ) & ( for a, b being Element of AffinStruct(# the carrier of the WeakAffVect,P #) holds
( a = b or ex c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( ( a <> c & a,b // b,c ) or ex p, p9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( p <> p9 & a,b // p,p9 & a,p // p,b & a,p9 // p9,b ) ) ) ) & ( for a, b, b9, p, p9, c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // b,c & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 holds
a,b9 // b9,c ) & ( for a, b, b9, c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a <> c & b <> b9 & a,b // b,c & a,b9 // b9,c holds
ex p, p9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( p <> p9 & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 ) ) & ( for a, b, c, p, p9, q, q9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // p,p9 & a,c // q,q9 & a,p // p,b & a,q // q,c & a,p9 // p9,b & a,q9 // q9,c holds
ex r, r9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( b,c // r,r9 & b,r // r,c & b,r9 // r9,c ) ) )
proof
let a,
b,
c,
d,
p,
q be
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #);
( a,b // p,q & c,d // p,q implies a,b // c,d )
assume A2:
(
a,
b // p,
q &
c,
d // p,
q )
;
a,b // c,d
reconsider a1 =
a,
b1 =
b,
c1 =
c,
d1 =
d,
p1 =
p,
q1 =
q as
Element of the
WeakAffVect ;
(
a1,
b1 '||' p1,
q1 &
c1,
d1 '||' p1,
q1 )
by A2, Lm15;
then
a1,
b1 '||' c1,
d1
by Lm6;
hence
a,
b // c,
d
by Lm15;
verum
end;
thus
for
a,
c being
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) ex
b being
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) st
a,
b // b,
c
( ( for a, a9, b, b9, p being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a <> a9 & b <> b9 & p,a // p,a9 & p,b // p,b9 holds
a,b // a9,b9 ) & ( for a, b being Element of AffinStruct(# the carrier of the WeakAffVect,P #) holds
( a = b or ex c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( ( a <> c & a,b // b,c ) or ex p, p9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( p <> p9 & a,b // p,p9 & a,p // p,b & a,p9 // p9,b ) ) ) ) & ( for a, b, b9, p, p9, c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // b,c & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 holds
a,b9 // b9,c ) & ( for a, b, b9, c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a <> c & b <> b9 & a,b // b,c & a,b9 // b9,c holds
ex p, p9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( p <> p9 & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 ) ) & ( for a, b, c, p, p9, q, q9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // p,p9 & a,c // q,q9 & a,p // p,b & a,q // q,c & a,p9 // p9,b & a,q9 // q9,c holds
ex r, r9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( b,c // r,r9 & b,r // r,c & b,r9 // r9,c ) ) )
proof
let a,
c be
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #);
ex b being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // b,c
reconsider a1 =
a,
c1 =
c as
Element of the
WeakAffVect ;
consider b1 being
Element of the
WeakAffVect such that A3:
a1,
b1 '||' b1,
c1
by Lm7;
reconsider b =
b1 as
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) ;
a,
b // b,
c
by A3, Lm15;
hence
ex
b being
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) st
a,
b // b,
c
;
verum
end;
thus
for
a,
a9,
b,
b9,
p being
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) st
a <> a9 &
b <> b9 &
p,
a // p,
a9 &
p,
b // p,
b9 holds
a,
b // a9,
b9
( ( for a, b being Element of AffinStruct(# the carrier of the WeakAffVect,P #) holds
( a = b or ex c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( ( a <> c & a,b // b,c ) or ex p, p9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( p <> p9 & a,b // p,p9 & a,p // p,b & a,p9 // p9,b ) ) ) ) & ( for a, b, b9, p, p9, c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // b,c & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 holds
a,b9 // b9,c ) & ( for a, b, b9, c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a <> c & b <> b9 & a,b // b,c & a,b9 // b9,c holds
ex p, p9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( p <> p9 & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 ) ) & ( for a, b, c, p, p9, q, q9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // p,p9 & a,c // q,q9 & a,p // p,b & a,q // q,c & a,p9 // p9,b & a,q9 // q9,c holds
ex r, r9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( b,c // r,r9 & b,r // r,c & b,r9 // r9,c ) ) )
proof
let a,
a9,
b,
b9,
p be
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #);
( a <> a9 & b <> b9 & p,a // p,a9 & p,b // p,b9 implies a,b // a9,b9 )
assume that A4:
(
a <> a9 &
b <> b9 )
and A5:
(
p,
a // p,
a9 &
p,
b // p,
b9 )
;
a,b // a9,b9
reconsider a1 =
a,
a19 =
a9,
b1 =
b,
b19 =
b9,
p1 =
p as
Element of the
WeakAffVect ;
(
p1,
a1 '||' p1,
a19 &
p1,
b1 '||' p1,
b19 )
by A5, Lm15;
then
a1,
b1 '||' a19,
b19
by A4, Lm8;
hence
a,
b // a9,
b9
by Lm15;
verum
end;
thus
for
a,
b being
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) holds
(
a = b or ex
c being
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) st
( (
a <> c &
a,
b // b,
c ) or ex
p,
p9 being
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) st
(
p <> p9 &
a,
b // p,
p9 &
a,
p // p,
b &
a,
p9 // p9,
b ) ) )
( ( for a, b, b9, p, p9, c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // b,c & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 holds
a,b9 // b9,c ) & ( for a, b, b9, c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a <> c & b <> b9 & a,b // b,c & a,b9 // b9,c holds
ex p, p9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( p <> p9 & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 ) ) & ( for a, b, c, p, p9, q, q9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // p,p9 & a,c // q,q9 & a,p // p,b & a,q // q,c & a,p9 // p9,b & a,q9 // q9,c holds
ex r, r9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( b,c // r,r9 & b,r // r,c & b,r9 // r9,c ) ) )
proof
let a,
b be
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #);
( a = b or ex c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( ( a <> c & a,b // b,c ) or ex p, p9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( p <> p9 & a,b // p,p9 & a,p // p,b & a,p9 // p9,b ) ) )
assume A6:
not
a = b
;
ex c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( ( a <> c & a,b // b,c ) or ex p, p9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( p <> p9 & a,b // p,p9 & a,p // p,b & a,p9 // p9,b ) )
reconsider a1 =
a,
b1 =
b as
Element of the
WeakAffVect ;
A7:
now ( ex p1, p19 being Element of the WeakAffVect st
( p1 <> p19 & a1,b1 '||' p1,p19 & a1,p1 '||' p1,b1 & a1,p19 '||' p19,b1 ) implies ex p, p9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( p <> p9 & a,b // p,p9 & a,p // p,b & a,p9 // p9,b ) )
given p1,
p19 being
Element of the
WeakAffVect such that A8:
p1 <> p19
and A9:
(
a1,
b1 '||' p1,
p19 &
a1,
p1 '||' p1,
b1 )
and A10:
a1,
p19 '||' p19,
b1
;
ex p, p9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( p <> p9 & a,b // p,p9 & a,p // p,b & a,p9 // p9,b )reconsider p =
p1,
p9 =
p19 as
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) ;
A11:
a,
p9 // p9,
b
by A10, Lm15;
(
a,
b // p,
p9 &
a,
p // p,
b )
by A9, Lm15;
hence
ex
p,
p9 being
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) st
(
p <> p9 &
a,
b // p,
p9 &
a,
p // p,
b &
a,
p9 // p9,
b )
by A8, A11;
verum
end;
now ( ex c1 being Element of the WeakAffVect st
( a1 <> c1 & a1,b1 '||' b1,c1 ) implies ex c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( a <> c & a,b // b,c ) )
given c1 being
Element of the
WeakAffVect such that A12:
a1 <> c1
and A13:
a1,
b1 '||' b1,
c1
;
ex c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( a <> c & a,b // b,c )reconsider c =
c1 as
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) ;
a,
b // b,
c
by A13, Lm15;
hence
ex
c being
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) st
(
a <> c &
a,
b // b,
c )
by A12;
verum
end;
hence
ex
c being
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) st
( (
a <> c &
a,
b // b,
c ) or ex
p,
p9 being
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) st
(
p <> p9 &
a,
b // p,
p9 &
a,
p // p,
b &
a,
p9 // p9,
b ) )
by A6, A7, Lm9;
verum
end;
thus
for
a,
b,
b9,
p,
p9,
c being
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) st
a,
b // b,
c &
b,
b9 // p,
p9 &
b,
p // p,
b9 &
b,
p9 // p9,
b9 holds
a,
b9 // b9,
c
( ( for a, b, b9, c being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a <> c & b <> b9 & a,b // b,c & a,b9 // b9,c holds
ex p, p9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( p <> p9 & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 ) ) & ( for a, b, c, p, p9, q, q9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // p,p9 & a,c // q,q9 & a,p // p,b & a,q // q,c & a,p9 // p9,b & a,q9 // q9,c holds
ex r, r9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( b,c // r,r9 & b,r // r,c & b,r9 // r9,c ) ) )
proof
let a,
b,
b9,
p,
p9,
c be
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #);
( a,b // b,c & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 implies a,b9 // b9,c )
assume that A14:
(
a,
b // b,
c &
b,
b9 // p,
p9 )
and A15:
(
b,
p // p,
b9 &
b,
p9 // p9,
b9 )
;
a,b9 // b9,c
reconsider a1 =
a,
b1 =
b,
b19 =
b9,
p1 =
p,
p19 =
p9,
c1 =
c as
Element of the
WeakAffVect ;
A16:
(
b1,
p1 '||' p1,
b19 &
b1,
p19 '||' p19,
b19 )
by A15, Lm15;
(
a1,
b1 '||' b1,
c1 &
b1,
b19 '||' p1,
p19 )
by A14, Lm15;
then
a1,
b19 '||' b19,
c1
by A16, Lm10;
hence
a,
b9 // b9,
c
by Lm15;
verum
end;
thus
for
a,
b,
b9,
c being
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) st
a <> c &
b <> b9 &
a,
b // b,
c &
a,
b9 // b9,
c holds
ex
p,
p9 being
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) st
(
p <> p9 &
b,
b9 // p,
p9 &
b,
p // p,
b9 &
b,
p9 // p9,
b9 )
for a, b, c, p, p9, q, q9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st a,b // p,p9 & a,c // q,q9 & a,p // p,b & a,q // q,c & a,p9 // p9,b & a,q9 // q9,c holds
ex r, r9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( b,c // r,r9 & b,r // r,c & b,r9 // r9,c )
proof
let a,
b,
b9,
c be
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #);
( a <> c & b <> b9 & a,b // b,c & a,b9 // b9,c implies ex p, p9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( p <> p9 & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 ) )
assume that A17:
(
a <> c &
b <> b9 )
and A18:
(
a,
b // b,
c &
a,
b9 // b9,
c )
;
ex p, p9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( p <> p9 & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 )
reconsider a1 =
a,
b1 =
b,
b19 =
b9,
c1 =
c as
Element of the
WeakAffVect ;
(
a1,
b1 '||' b1,
c1 &
a1,
b19 '||' b19,
c1 )
by A18, Lm15;
then consider p1,
p19 being
Element of the
WeakAffVect such that A19:
p1 <> p19
and A20:
(
b1,
b19 '||' p1,
p19 &
b1,
p1 '||' p1,
b19 )
and A21:
b1,
p19 '||' p19,
b19
by A17, Lm11;
reconsider p =
p1,
p9 =
p19 as
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) ;
A22:
b,
p9 // p9,
b9
by A21, Lm15;
(
b,
b9 // p,
p9 &
b,
p // p,
b9 )
by A20, Lm15;
hence
ex
p,
p9 being
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) st
(
p <> p9 &
b,
b9 // p,
p9 &
b,
p // p,
b9 &
b,
p9 // p9,
b9 )
by A19, A22;
verum
end;
thus
for
a,
b,
c,
p,
p9,
q,
q9 being
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) st
a,
b // p,
p9 &
a,
c // q,
q9 &
a,
p // p,
b &
a,
q // q,
c &
a,
p9 // p9,
b &
a,
q9 // q9,
c holds
ex
r,
r9 being
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) st
(
b,
c // r,
r9 &
b,
r // r,
c &
b,
r9 // r9,
c )
verum
proof
let a,
b,
c,
p,
p9,
q,
q9 be
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #);
( a,b // p,p9 & a,c // q,q9 & a,p // p,b & a,q // q,c & a,p9 // p9,b & a,q9 // q9,c implies ex r, r9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( b,c // r,r9 & b,r // r,c & b,r9 // r9,c ) )
assume that A23:
(
a,
b // p,
p9 &
a,
c // q,
q9 )
and A24:
(
a,
p // p,
b &
a,
q // q,
c )
and A25:
(
a,
p9 // p9,
b &
a,
q9 // q9,
c )
;
ex r, r9 being Element of AffinStruct(# the carrier of the WeakAffVect,P #) st
( b,c // r,r9 & b,r // r,c & b,r9 // r9,c )
reconsider a1 =
a,
b1 =
b,
c1 =
c,
p1 =
p,
p19 =
p9,
q1 =
q,
q19 =
q9 as
Element of the
WeakAffVect ;
A26:
(
a1,
p1 '||' p1,
b1 &
a1,
q1 '||' q1,
c1 )
by A24, Lm15;
A27:
(
a1,
p19 '||' p19,
b1 &
a1,
q19 '||' q19,
c1 )
by A25, Lm15;
(
a1,
b1 '||' p1,
p19 &
a1,
c1 '||' q1,
q19 )
by A23, Lm15;
then consider r1,
r19 being
Element of the
WeakAffVect such that A28:
(
b1,
c1 '||' r1,
r19 &
b1,
r1 '||' r1,
c1 )
and A29:
b1,
r19 '||' r19,
c1
by A26, A27, Lm12;
reconsider r =
r1,
r9 =
r19 as
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) ;
A30:
b,
r9 // r9,
c
by A29, Lm15;
(
b,
c // r,
r9 &
b,
r // r,
c )
by A28, Lm15;
hence
ex
r,
r9 being
Element of
AffinStruct(# the
carrier of the
WeakAffVect,
P #) st
(
b,
c // r,
r9 &
b,
r // r,
c &
b,
r9 // r9,
c )
by A30;
verum
end;
end;
definition
let IT be non
empty AffinStruct ;
attr IT is
WeakAffSegm-like means :
Def1:
( ( for
a,
b being
Element of
IT holds
a,
b // b,
a ) & ( for
a,
b being
Element of
IT st
a,
b // a,
a holds
a = b ) & ( for
a,
b,
c,
d,
p,
q being
Element of
IT st
a,
b // p,
q &
c,
d // p,
q holds
a,
b // c,
d ) & ( for
a,
c being
Element of
IT ex
b being
Element of
IT st
a,
b // b,
c ) & ( for
a,
a9,
b,
b9,
p being
Element of
IT st
a <> a9 &
b <> b9 &
p,
a // p,
a9 &
p,
b // p,
b9 holds
a,
b // a9,
b9 ) & ( for
a,
b being
Element of
IT holds
(
a = b or ex
c being
Element of
IT st
( (
a <> c &
a,
b // b,
c ) or ex
p,
p9 being
Element of
IT st
(
p <> p9 &
a,
b // p,
p9 &
a,
p // p,
b &
a,
p9 // p9,
b ) ) ) ) & ( for
a,
b,
b9,
p,
p9,
c being
Element of
IT st
a,
b // b,
c &
b,
b9 // p,
p9 &
b,
p // p,
b9 &
b,
p9 // p9,
b9 holds
a,
b9 // b9,
c ) & ( for
a,
b,
b9,
c being
Element of
IT st
a <> c &
b <> b9 &
a,
b // b,
c &
a,
b9 // b9,
c holds
ex
p,
p9 being
Element of
IT st
(
p <> p9 &
b,
b9 // p,
p9 &
b,
p // p,
b9 &
b,
p9 // p9,
b9 ) ) & ( for
a,
b,
c,
p,
p9,
q,
q9 being
Element of
IT st
a,
b // p,
p9 &
a,
c // q,
q9 &
a,
p // p,
b &
a,
q // q,
c &
a,
p9 // p9,
b &
a,
q9 // q9,
c holds
ex
r,
r9 being
Element of
IT st
(
b,
c // r,
r9 &
b,
r // r,
c &
b,
r9 // r9,
c ) ) );
end;
::
deftheorem Def1 defines
WeakAffSegm-like AFVECT01:def 1 :
for IT being non empty AffinStruct holds
( IT is WeakAffSegm-like iff ( ( for a, b being Element of IT holds a,b // b,a ) & ( for a, b being Element of IT st a,b // a,a holds
a = b ) & ( for a, b, c, d, p, q being Element of IT st a,b // p,q & c,d // p,q holds
a,b // c,d ) & ( for a, c being Element of IT ex b being Element of IT st a,b // b,c ) & ( for a, a9, b, b9, p being Element of IT st a <> a9 & b <> b9 & p,a // p,a9 & p,b // p,b9 holds
a,b // a9,b9 ) & ( for a, b being Element of IT holds
( a = b or ex c being Element of IT st
( ( a <> c & a,b // b,c ) or ex p, p9 being Element of IT st
( p <> p9 & a,b // p,p9 & a,p // p,b & a,p9 // p9,b ) ) ) ) & ( for a, b, b9, p, p9, c being Element of IT st a,b // b,c & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 holds
a,b9 // b9,c ) & ( for a, b, b9, c being Element of IT st a <> c & b <> b9 & a,b // b,c & a,b9 // b9,c holds
ex p, p9 being Element of IT st
( p <> p9 & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 ) ) & ( for a, b, c, p, p9, q, q9 being Element of IT st a,b // p,p9 & a,c // q,q9 & a,p // p,b & a,q // q,c & a,p9 // p9,b & a,q9 // q9,c holds
ex r, r9 being Element of IT st
( b,c // r,r9 & b,r // r,c & b,r9 // r9,c ) ) ) );
theorem Th7:
for
AFV being
WeakAffSegm for
a,
b,
c,
p,
p9 being
Element of
AFV st
a,
b // p,
p9 &
a,
b // b,
c &
a,
p // p,
b &
a,
p9 // p9,
b holds
a = c
theorem
for
AFV being
WeakAffSegm for
a,
b,
b9,
b99 being
Element of
AFV st
a,
b9 // a,
b99 &
a,
b // a,
b99 & not
b = b9 & not
b = b99 holds
b9 = b99
:: RELATION OF MAXIMAL DISTANCE AND MIDPOINT RELATION
::