Lm1:
2 |^ 0 = 1
by NEWTON:4;
Lm2: 2 |^ (1 + 1) =
(2 |^ 1) * 2
by NEWTON:6
.=
4
;
Lm3: 2 |^ (2 + 1) =
(2 |^ 2) * 2
by NEWTON:6
.=
8
by Lm2
;
Lm4: 2 |^ (3 + 1) =
(2 |^ 3) * 2
by NEWTON:6
.=
16
by Lm3
;
Lm5: 2 |^ (4 + 1) =
(2 |^ 4) * 2
by NEWTON:6
.=
32
by Lm4
;
Lm6: 2 |^ (5 + 1) =
(2 |^ 5) * 2
by NEWTON:6
.=
64
by Lm5
;
Lm7: 2 |^ (6 + 1) =
(2 |^ 6) * 2
by NEWTON:6
.=
128
by Lm6
;
Lm8: 2 |^ (7 + 1) =
(2 |^ 7) * 2
by NEWTON:6
.=
256
by Lm7
;
Lm9: 2 |^ (8 + 1) =
(2 |^ 8) * 2
by NEWTON:6
.=
512
by Lm8
;
Lm10: 2 |^ (9 + 1) =
(2 |^ 9) * 2
by NEWTON:6
.=
1024
by Lm9
;
Lm11: 2 |^ (10 + 1) =
(2 |^ 10) * 2
by NEWTON:6
.=
2048
by Lm10
;
Lm12: 2 |^ (11 + 1) =
(2 |^ 11) * 2
by NEWTON:6
.=
4096
by Lm11
;
Lm13: 2 |^ (12 + 1) =
(2 |^ 12) * 2
by NEWTON:6
.=
8192
by Lm12
;
Lm14: 2 |^ (13 + 1) =
(2 |^ 13) * 2
by NEWTON:6
.=
16384
by Lm13
;
Lm15: 2 |^ (14 + 1) =
(2 |^ 14) * 2
by NEWTON:6
.=
32768
by Lm14
;
Lm16: 2 |^ (15 + 1) =
(2 |^ 15) * 2
by NEWTON:6
.=
65536
by Lm15
;
Lm1107:
2 |^ (6 + 6) = (2 |^ 6) * (2 |^ 6)
by NEWTON:8;
Lm1108:
3 |^ 2 = 3 * 3
by WSIERP_1:1;
Lm1109:
3 |^ 3 = (3 * 3) * 3
by POLYEQ_5:2;
Lm1110:
3 |^ 4 = ((3 * 3) * 3) * 3
by POLYEQ_5:3;
Lm1111:
3 |^ 5 = (((3 * 3) * 3) * 3) * 3
by NUMBER02:1;
Lm1112:
3 |^ 6 = ((((3 * 3) * 3) * 3) * 3) * 3
by NUMBER02:2;
Lm1113:
3 |^ 10 = ((((((((3 * 3) * 3) * 3) * 3) * 3) * 3) * 3) * 3) * 3
by NUMBER02:6;
Lm1114:
3 |^ (5 + 6) = (3 |^ 5) * (3 |^ 6)
by NEWTON:8;
((3 |^ 5) * (3 |^ 6)) + 18 = 31 * 5715
by Lm1111, Lm1112;
then Lm1115:
3 |^ 11, - 18 are_congruent_mod 31
by Lm1114;
(10 - 31) mod 31 = 10 mod 31
by AESCIP_1:5;
then Lm1116:
(- 21) mod 31 = 10
by NAT_D:24;
Lm1117:
for a being Nat st ( for i being Nat holds not a + 1 = 2 |^ i ) holds
{ n where n is Nat : n divides (a |^ n) + 1 } is infinite
64, - 1 are_congruent_mod 65
;
then Lm1118:
(2 |^ 6) * (2 |^ 6),(- 1) * (- 1) are_congruent_mod 65
by Lm6, INT_1:18;
Lm1119:
(2 |^ 10) |^ 56 = 2 |^ (10 * 56)
by NEWTON:9;
Lm1120:
(2 |^ 56) |^ 10 = 2 |^ (10 * 56)
by NEWTON:9;
Lm1121:
(2 |^ 560) * (2 |^ 1) = 2 |^ (560 + 1)
by NEWTON:8;
Lm1122:
(2 |^ 10) |^ 64 = 2 |^ (10 * 64)
by NEWTON:9;
Lm1123:
(2 |^ 640) * (2 |^ 5) = 2 |^ (640 + 5)
by NEWTON:8;
Lm1124:
(2 |^ 4) |^ 161 = 2 |^ (4 * 161)
by NEWTON:9;
Lm1125:
(2 |^ 8) |^ 5 = 2 |^ (8 * 5)
by NEWTON:9;
Lm1126:
(2 |^ 644) * (2 |^ 1) = 2 |^ (644 + 1)
by NEWTON:8;
Lm1127:
(2 |^ 14) |^ 46 = 2 |^ (14 * 46)
by NEWTON:9;
Lm1128:
(2 |^ 1104) * (2 |^ 1) = 2 |^ (1104 + 1)
by NEWTON:8;
Lm1129:
(2 |^ 4) |^ 276 = 2 |^ (4 * 276)
by NEWTON:9;
Lm1130:
(2 |^ 56) |^ 19 = 2 |^ (56 * 19)
by NEWTON:9;
Lm1131:
(2 |^ 1064) * (2 |^ 41) = 2 |^ (1064 + 41)
by NEWTON:8;
Lm1132:
(2 |^ 12) |^ 92 = 2 |^ (12 * 92)
by NEWTON:9;
Lm1133:
(3 |^ 2) |^ 8 = 3 |^ (2 * 8)
by NEWTON:9;
Lm1134:
(3 |^ 3) |^ 368 = 3 |^ (3 * 368)
by NEWTON:9;
Lm1135:
(3 |^ 10) |^ 56 = 3 |^ (10 * 56)
by NEWTON:9;
Lm1136:
(3 |^ 16) |^ 35 = 3 |^ (16 * 35)
by NEWTON:9;
Lm1137:
(3 |^ 560) * (3 |^ 1) = 3 |^ (560 + 1)
by NEWTON:8;
Lm1138:
(3 |^ 4) |^ 276 = 3 |^ (4 * 276)
by NEWTON:9;
Lm1139:
(3 |^ 1104) * (3 |^ 1) = 3 |^ (1104 + 1)
by NEWTON:8;
Lm1140:
(3 |^ 16) |^ 69 = 3 |^ (16 * 69)
by NEWTON:9;
15 = 5 * 3
;
then Lm1141:
2 |^ 4,1 are_congruent_mod 5
by Lm4;
80 = 5 * 16
;
then Lm1142:
3 |^ 4,1 are_congruent_mod 5
by Lm1110;
Lm1143: 9 |^ 8 =
((((((9 * 9) * 9) * 9) * 9) * 9) * 9) * 9
by NUMBER02:4
.=
(10000 * 4304) + 6721
;
Lm1144:
(2 |^ 7) |^ 8 = 2 |^ (7 * 8)
by NEWTON:9;
119 = 17 * 7
;
then
2 |^ 7,9 are_congruent_mod 17
by Lm7;
then Lm1145:
(2 |^ 7) |^ 8,9 |^ 8 are_congruent_mod 17
by GR_CY_3:34;
(10000 * 4304) + 6720 = 17 * ((100 * 25321) + 60)
;
then Lm1146:
9 |^ 8,1 are_congruent_mod 17
by Lm1143;
LemS:
for a, c, k, m, n, t2 being Nat st 2 |^ k,a are_congruent_mod n & (((a * a) * a) * a) * (2 |^ m) = (n * t2) + c holds
2 |^ ((k * 4) + m),c are_congruent_mod n
Lem1:
for a, c, k, m, n, t1, t2 being Nat st 2 |^ k = (n * t1) + a & (((a * a) * a) * a) * (2 |^ m) = (n * t2) + c holds
2 |^ ((k * 4) + m),c are_congruent_mod n
Lm2062:
10 |^ 4 = ((10 * 10) * 10) * 10
by POLYEQ_5:3;