Th1:
for seq being without-infty ExtREAL_sequence holds Partial_Sums seq is without-infty ExtREAL_sequence
Th2:
for seq being without+infty ExtREAL_sequence holds Partial_Sums seq is without+infty ExtREAL_sequence
theorem Th14:
for
a,
b,
c,
d being
Real for
f being
PartFunc of
REAL,
REAL st
c <= d &
[.c,d.] c= [.a,b.] &
[.a,b.] c= dom f &
f | [.a,b.] is
bounded &
f is_integrable_on ['a,b'] &
f | [.a,b.] is
nonnegative holds
integral (
f,
c,
d)
<= integral (
f,
a,
b)
theorem
for
a,
b,
c,
d being
Real for
f being
PartFunc of
REAL,
REAL st
c <= d &
[.c,d.] c= [.a,b.] &
[.a,b.] c= dom f &
f | [.a,b.] is
bounded &
f is_integrable_on ['a,b'] &
f | [.a,b.] is
nonpositive holds
integral (
f,
c,
d)
>= integral (
f,
a,
b)
Lm1:
for X being non empty set
for S being SigmaField of X
for M being sigma_Measure of S
for f being PartFunc of X,ExtREAL
for A being Element of S
for E being SetSequence of S st f is nonnegative & f is A -measurable & A = dom f & E is disjoint_valued & A = Union E holds
ex I being nonnegative ExtREAL_sequence st
( ( for n being Nat holds I . n = Integral (M,(f | (E . n))) ) & I is summable & Integral (M,f) = Sum I )
Lm2:
for X being non empty set
for S being SigmaField of X
for M being sigma_Measure of S
for f being PartFunc of X,ExtREAL
for A, B being Element of S st dom f = A \/ B & f is A \/ B -measurable & A misses B & ( integral+ (M,(max+ f)) < +infty or integral+ (M,(max- f)) < +infty ) holds
Integral (M,f) = (Integral (M,(f | A))) + (Integral (M,(f | B)))
Lm3:
for a, b being Real
for E being sequence of (bool REAL) st a < b & ( for n being Nat holds E . n = [.a,(b - ((b - a) / (n + 1))).] ) holds
( E is non-descending & E is convergent & Union E = [.a,b.[ )
theorem Th22:
for
a,
b being
Real for
n being
Nat st
a < b holds
(
a <= b - ((b - a) / (n + 1)) &
b - ((b - a) / (n + 1)) < b &
a < a + ((b - a) / (n + 1)) &
a + ((b - a) / (n + 1)) <= b )
Lm4:
for a, b being Real
for E being sequence of (bool REAL) st a < b & ( for n being Nat holds E . n = [.(a + ((b - a) / (n + 1))),b.] ) holds
( E is non-descending & E is convergent & Union E = ].a,b.] )
Lm5:
for a being Real
for E being sequence of (bool REAL) st ( for n being Nat holds E . n = [.a,(a + n).] ) holds
( E is non-descending & E is convergent & Union E = [.a,+infty.[ )
Lm6:
for a being Real
for E being sequence of (bool REAL) st ( for n being Nat holds E . n = [.(a - n),a.] ) holds
( E is non-descending & E is convergent & Union E = ].-infty,a.] )
Lm7:
for f being PartFunc of REAL,REAL
for a, b being Real
for A being non empty Subset of REAL st ].a,b.] c= dom f & A = ].a,b.] & f is_left_improper_integrable_on a,b & f | A is nonnegative & not f is_left_ext_Riemann_integrable_on a,b holds
( left_improper_integral (f,a,b) = Integral (L-Meas,(f | A)) & Integral (L-Meas,(f | A)) = +infty )
Lm8:
for f being PartFunc of REAL,REAL
for a, b being Real
for A being non empty Subset of REAL st [.a,b.[ c= dom f & A = [.a,b.[ & f is_right_improper_integrable_on a,b & f | A is nonnegative & not f is_right_ext_Riemann_integrable_on a,b holds
( right_improper_integral (f,a,b) = Integral (L-Meas,(f | A)) & Integral (L-Meas,(f | A)) = +infty )
theorem Th41:
for
f being
PartFunc of
REAL,
REAL for
a,
b being
Real for
A being non
empty Subset of
REAL st
[.a,b.[ c= dom f &
A = [.a,b.[ &
f is_right_improper_integrable_on a,
b &
f | A is
nonnegative holds
(
right_improper_integral (
f,
a,
b)
= Integral (
L-Meas,
(f | A)) & (
f is_right_ext_Riemann_integrable_on a,
b implies
f | A is_integrable_on L-Meas ) & ( not
f is_right_ext_Riemann_integrable_on a,
b implies
Integral (
L-Meas,
(f | A))
= +infty ) )
theorem
for
f being
PartFunc of
REAL,
REAL for
a,
b being
Real for
A being non
empty Subset of
REAL st
[.a,b.[ c= dom f &
A = [.a,b.[ &
f is_right_improper_integrable_on a,
b &
f | A is
nonpositive holds
(
right_improper_integral (
f,
a,
b)
= Integral (
L-Meas,
(f | A)) & (
f is_right_ext_Riemann_integrable_on a,
b implies
f | A is_integrable_on L-Meas ) & ( not
f is_right_ext_Riemann_integrable_on a,
b implies
Integral (
L-Meas,
(f | A))
= -infty ) )
theorem Th43:
for
f being
PartFunc of
REAL,
REAL for
a,
b being
Real for
A being non
empty Subset of
REAL st
].a,b.] c= dom f &
A = ].a,b.] &
f is_left_improper_integrable_on a,
b &
f | A is
nonnegative holds
(
left_improper_integral (
f,
a,
b)
= Integral (
L-Meas,
(f | A)) & (
f is_left_ext_Riemann_integrable_on a,
b implies
f | A is_integrable_on L-Meas ) & ( not
f is_left_ext_Riemann_integrable_on a,
b implies
Integral (
L-Meas,
(f | A))
= +infty ) )
theorem
for
f being
PartFunc of
REAL,
REAL for
a,
b being
Real for
A being non
empty Subset of
REAL st
].a,b.] c= dom f &
A = ].a,b.] &
f is_left_improper_integrable_on a,
b &
f | A is
nonpositive holds
(
left_improper_integral (
f,
a,
b)
= Integral (
L-Meas,
(f | A)) & (
f is_left_ext_Riemann_integrable_on a,
b implies
f | A is_integrable_on L-Meas ) & ( not
f is_left_ext_Riemann_integrable_on a,
b implies
Integral (
L-Meas,
(f | A))
= -infty ) )
theorem Th45:
for
f being
PartFunc of
REAL,
REAL for
a,
b being
Real for
A being non
empty Subset of
REAL st
].a,b.[ c= dom f &
A = ].a,b.[ &
f is_improper_integrable_on a,
b &
f | A is
nonnegative holds
(
improper_integral (
f,
a,
b)
= Integral (
L-Meas,
(f | A)) & ( ex
c being
Real st
(
a < c &
c < b &
f is_left_ext_Riemann_integrable_on a,
c &
f is_right_ext_Riemann_integrable_on c,
b ) implies
f | A is_integrable_on L-Meas ) & ( ( for
c being
Real st
a < c &
c < b &
f is_left_ext_Riemann_integrable_on a,
c holds
not
f is_right_ext_Riemann_integrable_on c,
b ) implies
Integral (
L-Meas,
(f | A))
= +infty ) )
theorem
for
f being
PartFunc of
REAL,
REAL for
a,
b being
Real for
A being non
empty Subset of
REAL st
].a,b.[ c= dom f &
A = ].a,b.[ &
f is_improper_integrable_on a,
b &
f | A is
nonpositive holds
(
improper_integral (
f,
a,
b)
= Integral (
L-Meas,
(f | A)) & ( ex
c being
Real st
(
a < c &
c < b &
f is_left_ext_Riemann_integrable_on a,
c &
f is_right_ext_Riemann_integrable_on c,
b ) implies
f | A is_integrable_on L-Meas ) & ( ( for
c being
Real st
a < c &
c < b &
f is_left_ext_Riemann_integrable_on a,
c holds
not
f is_right_ext_Riemann_integrable_on c,
b ) implies
Integral (
L-Meas,
(f | A))
= -infty ) )
Lm9:
for f being PartFunc of REAL,REAL
for b being Real
for A being non empty Subset of REAL st left_closed_halfline b c= dom f & A = left_closed_halfline b & f is_-infty_improper_integrable_on b & f is nonnegative & not f is_-infty_ext_Riemann_integrable_on b holds
( improper_integral_-infty (f,b) = Integral (L-Meas,(f | A)) & Integral (L-Meas,(f | A)) = +infty )
Lm10:
for f being PartFunc of REAL,REAL
for a being Real
for A being non empty Subset of REAL st right_closed_halfline a c= dom f & A = right_closed_halfline a & f is_+infty_improper_integrable_on a & f is nonnegative & not f is_+infty_ext_Riemann_integrable_on a holds
( improper_integral_+infty (f,a) = Integral (L-Meas,(f | A)) & Integral (L-Meas,(f | A)) = +infty )
theorem Th57:
for
f being
PartFunc of
REAL,
REAL for
a,
b being
Real st
a < b &
[.a,b.[ c= dom f &
f is_right_improper_integrable_on a,
b &
abs f is_right_ext_Riemann_integrable_on a,
b holds
(
f is_right_ext_Riemann_integrable_on a,
b &
right_improper_integral (
f,
a,
b)
<= right_improper_integral (
(abs f),
a,
b) &
right_improper_integral (
(abs f),
a,
b)
< +infty )
theorem Th58:
for
f being
PartFunc of
REAL,
REAL for
a,
b being
Real st
a < b &
].a,b.] c= dom f &
f is_left_improper_integrable_on a,
b &
abs f is_left_ext_Riemann_integrable_on a,
b holds
(
f is_left_ext_Riemann_integrable_on a,
b &
left_improper_integral (
f,
a,
b)
<= left_improper_integral (
(abs f),
a,
b) &
left_improper_integral (
(abs f),
a,
b)
< +infty )
theorem Th62:
for
f being
PartFunc of
REAL,
REAL for
a,
b being
Real st
a <= b &
[.a,b.] c= dom f &
f is_integrable_on ['a,b'] &
f | ['a,b'] is
bounded holds
(
max+ f is_integrable_on ['a,b'] &
max- f is_integrable_on ['a,b'] & 2
* (integral ((max+ f),a,b)) = (integral (f,a,b)) + (integral ((abs f),a,b)) & 2
* (integral ((max- f),a,b)) = (- (integral (f,a,b))) + (integral ((abs f),a,b)) &
integral (
f,
a,
b)
= (integral ((max+ f),a,b)) - (integral ((max- f),a,b)) )
theorem Th71:
for
f being
PartFunc of
REAL,
REAL for
a,
b being
Real st
].a,b.] c= dom f &
max+ f is_left_ext_Riemann_integrable_on a,
b &
max- f is_left_ext_Riemann_integrable_on a,
b holds
(
f is_left_ext_Riemann_integrable_on a,
b &
left_improper_integral (
f,
a,
b)
= (left_improper_integral ((max+ f),a,b)) - (left_improper_integral ((max- f),a,b)) )
theorem Th72:
for
f being
PartFunc of
REAL,
REAL for
a,
b being
Real st
[.a,b.[ c= dom f &
max+ f is_right_ext_Riemann_integrable_on a,
b &
max- f is_right_ext_Riemann_integrable_on a,
b holds
(
f is_right_ext_Riemann_integrable_on a,
b &
right_improper_integral (
f,
a,
b)
= (right_improper_integral ((max+ f),a,b)) - (right_improper_integral ((max- f),a,b)) )
theorem
for
f being
PartFunc of
REAL,
REAL for
a,
b being
Real for
A being non
empty Subset of
REAL st
].a,b.[ c= dom f &
A = ].a,b.[ &
f is_improper_integrable_on a,
b & ex
c being
Real st
(
a < c &
c < b &
abs f is_left_ext_Riemann_integrable_on a,
c &
abs f is_right_ext_Riemann_integrable_on c,
b ) holds
(
f | A is_integrable_on L-Meas &
improper_integral (
f,
a,
b)
= Integral (
L-Meas,
(f | A)) )