Lm1:
for x, y being Integer
for D being Nat holds
( (x ^2) - (D * (y ^2)) = 1 iff [x,y] is Pell's_solution of D )
theorem Th2:
for
T being
_Theta for
lambda,
epsilon1,
epsilon2 being
Real st
lambda = T * epsilon1 &
|.epsilon1.| <= |.epsilon2.| holds
ex
T1 being
_Theta st
lambda = T1 * epsilon2
theorem Th3:
for
T1,
T2 being
_Theta for
lambda,
epsilon1,
epsilon2 being
Real st
lambda = (1 + (T1 * epsilon1)) * (1 + (T2 * epsilon2)) &
0 <= epsilon1 &
epsilon1 <= 1 &
0 <= epsilon2 holds
ex
T being
_Theta st
lambda = 1
+ (T * (epsilon1 + (2 * epsilon2)))
theorem Th4:
for
T1,
T2 being
_Theta for
epsilon1,
epsilon2 being
Real st
T1 * epsilon1 <= epsilon2 &
epsilon2 <= T2 * epsilon1 holds
ex
T being
_Theta st
epsilon2 = T * epsilon1
theorem Th5:
for
T being
_Theta for
lambda,
epsilon1,
epsilon2 being
Real st
lambda = T * epsilon1 &
epsilon1 <= epsilon2 &
0 <= epsilon1 holds
ex
T1 being
_Theta st
lambda = T1 * epsilon2
theorem Th6:
for
T1,
T2 being
_Theta for
epsilon1,
epsilon2 being
Real st
0 <= epsilon1 &
0 <= epsilon2 holds
ex
T being
_Theta st
(T1 * epsilon1) + (T2 * epsilon2) = T * (epsilon1 + epsilon2)
theorem Th7:
for
T1 being
_Theta for
epsilon being
Real st
0 <= epsilon &
epsilon <= 1
/ 2 holds
ex
T2 being
_Theta st 1
/ (1 + (T1 * epsilon)) = 1
+ ((T2 * 2) * epsilon)
theorem Th9:
for
n being
Nat for
T being
_Theta for
alpha,
epsilon being
Real st
alpha = (1 + (T * epsilon)) |^ n &
0 <= epsilon &
epsilon <= 1
/ (2 * n) holds
ex
T1 being
_Theta st
alpha = 1
+ (((T1 * 2) * n) * epsilon)
theorem Th15:
for
f,
k,
m,
r,
s,
t,
u being
Nat for
W,
M,
U,
S,
T,
Q being
Integer st
f > 0 &
k > 0 &
m > 0 &
u > 0 &
(((M ^2) - 1) * (S ^2)) + 1 is
square &
((((M * U) ^2) - 1) * (T ^2)) + 1 is
square &
(((W ^2) * (u ^2)) - ((((W ^2) - 1) * S) * u)) - 1,
0 are_congruent_mod Q &
(((4 * (f ^2)) - 1) * ((r - (((m * S) * T) * U)) ^2)) + (((4 * (u ^2)) * (S ^2)) * (T ^2)) < ((((8 * f) * u) * S) * T) * (r - (((m * S) * T) * U)) &
W = ((100 * f) * k) * (k + 1) &
U = ((100 * (u |^ 3)) * (W |^ 3)) + 1 &
M = (((100 * m) * U) * W) + 1 &
S = (((M - 1) * s) + k) + 1 &
T = (((((M * U) - 1) * t) + W) - k) + 1 &
Q = (((2 * M) * W) - (W ^2)) - 1 holds
(
M * (U + 1) is non
trivial Nat &
W is
Nat & ( for
mu being non
trivial Nat for
w being
Nat st
mu = M * (U + 1) &
w = W &
(r + W) + 1
= Py (
mu,
(w + 1)) holds
f = k ! ) )
theorem Th16:
for
f,
k being
Nat st
f = k ! &
k > 0 holds
ex
m,
r,
s,
t,
u,
W,
U,
S,
T,
Q being
Nat ex
M being non
trivial Nat st
(
m > 0 &
u > 0 &
(r + W) + 1
= Py (
(M * (U + 1)),
(W + 1)) &
(((M ^2) - 1) * (S ^2)) + 1 is
square &
((((M * U) ^2) - 1) * (T ^2)) + 1 is
square &
(((W ^2) * (u ^2)) - ((((W ^2) - 1) * S) * u)) - 1,
0 are_congruent_mod Q &
(((4 * (f ^2)) - 1) * ((r - (((m * S) * T) * U)) ^2)) + (((4 * (u ^2)) * (S ^2)) * (T ^2)) < ((((8 * f) * u) * S) * T) * (r - (((m * S) * T) * U)) &
W = ((100 * f) * k) * (k + 1) &
U = ((100 * (u |^ 3)) * (W |^ 3)) + 1 &
M = (((100 * m) * U) * W) + 1 &
S = (((M - 1) * s) + k) + 1 &
T = (((((M * U) - 1) * t) + W) - k) + 1 &
Q = (((2 * M) * W) - (W ^2)) - 1 )
theorem Th17:
for
A being non
trivial Nat for
C,
B,
e being
Nat st
0 < B &
C = Py (
A,
B) holds
ex
i,
j,
D,
E,
F,
G,
H,
I being
Nat st
(
(D * F) * I is
square &
F divides H - C &
B <= C &
D = (((A ^2) - 1) * (C ^2)) + 1 &
E = (((2 * (i + 1)) * D) * (e + 1)) * (C ^2) &
F = (((A ^2) - 1) * (E ^2)) + 1 &
G = A + (F * (F - A)) &
H = B + ((2 * j) * C) &
I = (((G ^2) - 1) * (H ^2)) + 1 )
theorem
for
k being
Nat for
L being
positive Nat st
k > 0 holds
(
k + 1 is
prime iff ex
f,
i,
j,
m,
u being
positive Nat ex
r,
s,
t being
Nat ex
A,
B,
C,
D,
E,
F,
G,
H,
I,
W,
U,
M,
S,
T,
Q being
Integer st
(
(D * F) * I is
square &
F divides H - C &
(((M ^2) - 1) * (S ^2)) + 1 is
square &
((((M * U) ^2) - 1) * (T ^2)) + 1 is
square &
(((W ^2) * (u ^2)) - ((((W ^2) - 1) * S) * u)) - 1,
0 are_congruent_mod Q &
(((4 * (f ^2)) - 1) * ((r - (((m * S) * T) * U)) ^2)) + (((4 * (u ^2)) * (S ^2)) * (T ^2)) < ((((8 * f) * u) * S) * T) * (r - (((m * S) * T) * U)) &
k + 1
divides f + 1 &
A = M * (U + 1) &
B = W + 1 &
C = (r + W) + 1 &
D = (((A ^2) - 1) * (C ^2)) + 1 &
E = (((2 * i) * (C ^2)) * L) * D &
F = (((A ^2) - 1) * (E ^2)) + 1 &
G = A + (F * (F - A)) &
H = B + ((2 * (j - 1)) * C) &
I = (((G ^2) - 1) * (H ^2)) + 1 &
W = ((100 * f) * k) * (k + 1) &
U = ((100 * (u |^ 3)) * (W |^ 3)) + 1 &
M = (((100 * m) * U) * W) + 1 &
S = (((M - 1) * s) + k) + 1 &
T = (((((M * U) - 1) * t) + W) - k) + 1 &
Q = (((2 * M) * W) - (W ^2)) - 1 ) )
theorem
for
k being
Nat st
k > 0 holds
(
k + 1 is
prime iff ex
f,
i,
j,
m,
u being
positive Nat ex
r,
s,
t being
Nat ex
A,
B,
C,
D,
E,
F,
G,
H,
I,
L,
W,
U,
M,
S,
T,
Q being
Integer st
(
(D * F) * I is
square &
(((M ^2) - 1) * (S ^2)) + 1 is
square &
((((M * U) ^2) - 1) * (T ^2)) + 1 is
square &
(((4 * (f ^2)) - 1) * ((r - (((m * S) * T) * U)) ^2)) + (((4 * (u ^2)) * (S ^2)) * (T ^2)) < ((((8 * f) * u) * S) * T) * (r - (((m * S) * T) * U)) &
F * L divides (((H - C) * L) + ((F * (f + 1)) * Q)) + ((F * (k + 1)) * ((((((W ^2) - 1) * S) * u) - ((W ^2) * (u ^2))) + 1)) &
A = M * (U + 1) &
B = W + 1 &
C = (r + W) + 1 &
D = (((A ^2) - 1) * (C ^2)) + 1 &
E = (((2 * i) * (C ^2)) * L) * D &
F = (((A ^2) - 1) * (E ^2)) + 1 &
G = A + (F * (F - A)) &
H = B + ((2 * (j - 1)) * C) &
I = (((G ^2) - 1) * (H ^2)) + 1 &
L = (k + 1) * Q &
W = ((100 * f) * k) * (k + 1) &
U = ((100 * (u |^ 3)) * (W |^ 3)) + 1 &
M = (((100 * m) * U) * W) + 1 &
S = (((M - 1) * s) + k) + 1 &
T = (((((M * U) - 1) * t) + W) - k) + 1 &
Q = (((2 * M) * W) - (W ^2)) - 1 ) )
::with 2 Explicite Unknowns $i$, $j$