Lm4:
for A being non empty closed_interval Subset of REAL
for f being PartFunc of REAL,REAL st A c= dom f & ( for x being Real st x in A holds
f . x = 0 ) holds
integral (f,A) = 0
theorem
for
a,
b,
c being
Real for
f being
Function of
REAL,
REAL st
a < b &
b <= c &
f is_integrable_on ['a,c'] &
f | ['a,c'] is
bounded & ( for
x being
Real st
x in ['b,c'] holds
f . x = 0 ) holds
centroid (
f,
['a,c'])
= centroid (
f,
['a,b'])
theorem
for
a,
b,
c being
Real for
f being
Function of
REAL,
REAL st
a <= b &
b < c &
f is_integrable_on ['a,c'] &
f | ['a,c'] is
bounded & ( for
x being
Real st
x in ['a,b'] holds
f . x = 0 ) holds
centroid (
f,
['a,c'])
= centroid (
f,
['b,c'])
theorem
for
a,
b,
c being
Real for
f,
g,
h being
Function of
REAL,
REAL st
a <= b &
b <= c &
f | ['a,c'] is
bounded &
g | ['a,c'] is
bounded &
h = (f | [.a,b.]) +* (g | [.b,c.]) &
f . b = g . b holds
h | ['a,c'] is
bounded
theorem Th18B:
for
a,
b,
c being
Real for
f,
g,
h being
Function of
REAL,
REAL st
a <= b &
b <= c &
f | ['a,c'] is
bounded &
g | ['a,c'] is
bounded &
h | [.a,c.] = (f | [.a,b.]) +* (g | [.b,c.]) &
f . b = g . b holds
h | ['a,c'] is
bounded
theorem Lm22b1:
for
a,
b,
c being
Real for
f,
g,
h,
F being
Function of
REAL,
REAL st
a <= b &
b <= c &
f is
continuous &
g is
continuous &
h | [.a,c.] = (f | [.a,b.]) +* (g | [.b,c.]) &
f . b = g . b &
F = h | [.a,c.] holds
F is
continuous
Th24:
for a, b, c being Real
for f, g, F being Function of REAL,REAL st a <= b & b <= c & f is continuous & g is continuous & F = (f | [.a,b.]) +* (g | [.b,c.]) & f . b = g . b holds
F is continuous
theorem Th18Z:
for
a,
b,
c being
Real for
f,
g,
h being
Function of
REAL,
REAL st
a <= b &
b <= c &
f is_integrable_on ['a,c'] &
f | ['a,c'] is
bounded &
g is_integrable_on ['a,c'] &
g | ['a,c'] is
bounded &
h | [.a,c.] = (f | [.a,b.]) +* (g | [.b,c.]) &
h is_integrable_on ['a,c'] &
f . b = g . b holds
integral (
h,
['a,c'])
= (integral (f,['a,b'])) + (integral (g,['b,c']))
theorem
for
a,
b,
c being
Real for
f,
g,
h being
Function of
REAL,
REAL st
a <= b &
b <= c &
f is
continuous &
g is
continuous &
h = (f | [.a,b.]) +* (g | [.b,c.]) &
f . b = g . b holds
integral (
((id REAL) (#) h),
['a,c'])
= (integral (((id REAL) (#) f),['a,b'])) + (integral (((id REAL) (#) g),['b,c']))
theorem
for
a,
b,
c being
Real for
f,
g,
h being
Function of
REAL,
REAL st
a <= c &
h | [.a,c.] = (f | [.a,b.]) +* (g | [.b,c.]) &
f . b = g . b holds
( (
b <= a implies
h | [.a,c.] = g | [.a,c.] ) & (
c <= b implies
h | [.a,c.] = f | [.a,c.] ) )
theorem Th17C:
for
A being non
empty closed_interval Subset of
REAL for
a,
b,
p,
q being
Real for
f being
Function of
REAL,
REAL st
f = ((AffineMap (a,b)) | ].-infty,((q - b) / (a - p)).[) +* ((AffineMap (p,q)) | [.((q - b) / (a - p)),+infty.[) &
(q - b) / (a - p) in A holds
f | A = ((AffineMap (a,b)) | [.(lower_bound A),((q - b) / (a - p)).]) +* ((AffineMap (p,q)) | [.((q - b) / (a - p)),(upper_bound A).])
theorem Th17:
for
A being non
empty closed_interval Subset of
REAL for
a,
b,
p,
q being
Real for
f being
Function of
REAL,
REAL st
a <> p &
f = ((AffineMap (a,b)) | ].-infty,((q - b) / (a - p)).[) +* ((AffineMap (p,q)) | [.((q - b) / (a - p)),+infty.[) holds
( (
(q - b) / (a - p) in A implies
integral (
f,
A)
= (integral ((AffineMap (a,b)),['(lower_bound A),((q - b) / (a - p))'])) + (integral ((AffineMap (p,q)),['((q - b) / (a - p)),(upper_bound A)'])) ) & (
(q - b) / (a - p) <= lower_bound A implies
integral (
f,
A)
= integral (
(AffineMap (p,q)),
A) ) & (
(q - b) / (a - p) >= upper_bound A implies
integral (
f,
A)
= integral (
(AffineMap (a,b)),
A) ) )
theorem Th23A:
for
A being non
empty closed_interval Subset of
REAL for
a,
b,
p,
q being
Real for
f being
Function of
REAL,
REAL st
a <> p &
f | A = ((AffineMap (a,b)) | [.(lower_bound A),((q - b) / (a - p)).]) +* ((AffineMap (p,q)) | [.((q - b) / (a - p)),(upper_bound A).]) &
(q - b) / (a - p) in A holds
integral (
((id REAL) (#) f),
A)
= (integral (((id REAL) (#) (AffineMap (a,b))),['(lower_bound A),((q - b) / (a - p))'])) + (integral (((id REAL) (#) (AffineMap (p,q))),['((q - b) / (a - p)),(upper_bound A)']))
theorem
for
A being non
empty closed_interval Subset of
REAL for
a,
b,
p,
q,
c,
d,
e being
Real for
f being
Function of
REAL,
REAL st
a <> p &
f | A = ((AffineMap (a,b)) | [.(lower_bound A),((q - b) / (a - p)).]) +* ((AffineMap (p,q)) | [.((q - b) / (a - p)),(upper_bound A).]) &
(q - b) / (a - p) in A holds
centroid (
f,
A)
= ((((((1 / 3) * a) * ((((q - b) / (a - p)) ^3) - ((lower_bound A) ^3))) + (((1 / 2) * b) * ((((q - b) / (a - p)) ^2) - ((lower_bound A) ^2)))) + (((1 / 3) * p) * (((upper_bound A) ^3) - (((q - b) / (a - p)) ^3)))) + (((1 / 2) * q) * (((upper_bound A) ^2) - (((q - b) / (a - p)) ^2)))) / ((((((1 / 2) * a) * ((((q - b) / (a - p)) ^2) - ((lower_bound A) ^2))) + (b * (((q - b) / (a - p)) - (lower_bound A)))) + (((1 / 2) * p) * (((upper_bound A) ^2) - (((q - b) / (a - p)) ^2)))) + (q * ((upper_bound A) - ((q - b) / (a - p)))))
::: f is_integrable_on A and
::: f | A is bounded;