bb0:
for F being Field
for E being FieldExtension of F
for K being b1 -extending FieldExtension of F
for a being Element of E
for b being Element of K st b = a holds
the carrier of (RAdj (F,{a})) = the carrier of (RAdj (F,{b}))
bba:
for F being Field
for E being FieldExtension of F
for K being b1 -extending FieldExtension of F
for a being b1 -algebraic Element of E
for b being b1 -algebraic Element of K st b = a holds
the carrier of (FAdj (F,{a})) = the carrier of (FAdj (F,{b}))
registration
let F be
Field;
let E be
FieldExtension of
F;
let a,
b,
c be
Element of
E;
coherence
( FAdj (F,{a,b,c}) is FAdj (F,{a,b}) -extending & FAdj (F,{a,b,c}) is FAdj (F,{a,c}) -extending & FAdj (F,{a,b,c}) is FAdj (F,{b,c}) -extending )
end;
LL0:
( (((0_. F_Rat) +* (0,(- 2))) +* (3,1)) . 0 = - 2 & (((0_. F_Rat) +* (0,(- 2))) +* (3,1)) . 1 = 0 & (((0_. F_Rat) +* (0,(- 2))) +* (3,1)) . 2 = 0 & (((0_. F_Rat) +* (0,(- 2))) +* (3,1)) . 3 = 1 & ( for n being Nat st n >= 4 holds
(((0_. F_Rat) +* (0,(- 2))) +* (3,1)) . n = 0 ) )
lemI:
for z being Element of F_Complex holds
( z |^ 3 = z * (z ^2) & z |^ 2 = z ^2 & z |^ 2 = z * z )
LL01:
( (((0_. F_Rat) +* (0,(- 1))) +* (3,1)) . 0 = - 1 & (((0_. F_Rat) +* (0,(- 1))) +* (3,1)) . 1 = 0 & (((0_. F_Rat) +* (0,(- 1))) +* (3,1)) . 2 = 0 & (((0_. F_Rat) +* (0,(- 1))) +* (3,1)) . 3 = 1 & ( for n being Nat st n >= 4 holds
(((0_. F_Rat) +* (0,(- 1))) +* (3,1)) . n = 0 ) )
LL1:
( len X^3-2 = 4 & len X^3-1 = 4 )
LL:
( deg X^3-2 = 3 & deg X^3-1 = 3 & deg X^2+X+1 = 2 & deg X^2-2 = 2 )
LL3:
for x being Element of F_Rat holds eval (X^3-2,x) = (x |^ 3) - 2
LL31:
for x being Element of F_Rat holds eval (X^3-1,x) = (x |^ 3) - 1
LL32:
for x being Element of F_Rat holds eval (X^2+X+1,x) = ((x |^ 2) + x) + 1
LKX2:
for x being Element of F_Rat holds eval (X^2-2,x) = (x |^ 2) - 2
LKX2ext:
for z being Element of F_Real holds Ext_eval (X^2-2,z) = (z |^ 2) - 2
lem3:
for r being Rational
for a being Element of F_Rat st a = r holds
a |^ 3 = r |^ 3
R32:
3-Root(2) |^ 3 = 2
LL2:
Ext_eval (X^3-2,3-Root(2)) = 0. F_Real
LZ23:
( zeta |^ 2 <> 1 & zeta |^ 3 = 1 & zeta |^ 2 = (- zeta) - 1 )
lem3c:
for r being Complex
for a being Element of F_Complex st a = r holds
a |^ 3 = r |^ 3
LL33:
Ext_eval (X^3-1,zeta) = 0. F_Complex
evalext11:
for z being Element of F_Complex holds Ext_eval (X^2+X+1,z) = ((z |^ 2) + z) + 1
rootz:
Roots (F_Complex,X^2+X+1) = {zeta,(zeta ^2)}
leng:
for R being Field
for p, q being Polynomial of R holds len (p *' q) <= ((len p) + (len q)) -' 1
lemX3:
X^3-1 = (X- (1. F_Rat)) * X^2+X+1
evalext1:
for z being Element of F_Complex holds Ext_eval (X^3-1,z) = (z |^ 3) - 1
lemCRo:
for z being Element of the carrier of F_Complex holds
( Ext_eval (X^3-1,z) = 0. F_Complex iff z is CRoot of 3,1 )
lemCRo2:
( zeta is CRoot of 3,1 & zeta ^2 is CRoot of 3,1 )
lemroots3:
Roots (F_Complex,X^3-1) = {1,zeta,(zeta ^2)}
lemlem:
( not zeta in REAL & not zeta ^2 in REAL )
llsplit1:
for F being Field st F is algebraic-closed holds
for p being non constant Polynomial of F holds p splits_in F
LLsplit:
( X^3-2 splits_in F_Complex & X^3-1 splits_in F_Complex & X^2+X+1 splits_in F_Complex )
lemroots:
Roots (F_Complex,X^3-2) = {3-Root(2),(3-Root(2) * zeta),(3-Root(2) * (zeta ^2))}
lemnotsplit:
( not 3-Root(2) * zeta in REAL & not 3-Root(2) * (zeta ^2) in REAL )
registration
coherence
F_Complex is FAdj (F_Rat,{2-CRoot(2)}) -extending
by FIELD_4:7;
coherence
F_Complex is FAdj (F_Rat,{2-CRoot(2),zeta}) -extending
by FIELD_4:7;
coherence
FAdj (F_Rat,{2-CRoot(2),zeta}) is FAdj (F_Rat,{2-CRoot(2)}) -extending
;
coherence
FAdj (F_Rat,{3-CRoot(2),zeta,2-CRoot(2)}) is FAdj (F_Rat,{2-CRoot(2),zeta}) -extending
;
end;