:: Basic Properties of Extended Real Numbers
:: by Andrzej Trybulec, Yatsuka Nakamura, Artur Korni{\l}owicz and
::
:: Received January 22, 2007
:: Copyright (c) 2007-2021 Association of Mizar Users
scheme
:: XXREAL_1:sch 1
Conti
{
P
1
[
object
],
P
2
[
object
] } :
ex
s
being
ExtReal
st
( ( for
r
being
ExtReal
st
P
1
[
r
] holds
r
<=
s
) & ( for
r
being
ExtReal
st
P
2
[
r
] holds
s
<=
r
) )
provided
A1
: for
r
,
s
being
ExtReal
st
P
1
[
r
] &
P
2
[
s
] holds
r
<=
s
proof
end;
definition
let
r
,
s
be
ExtReal
;
func
[.
r
,
s
.]
->
set
equals
:: XXREAL_1:def 1
{
a
where
a
is
Element
of
ExtREAL
: (
r
<=
a
&
a
<=
s
)
}
;
correctness
coherence
{
a
where
a
is
Element
of
ExtREAL
: (
r
<=
a
&
a
<=
s
)
}
is
set
;
;
func
[.
r
,
s
.[
->
set
equals
:: XXREAL_1:def 2
{
a
where
a
is
Element
of
ExtREAL
: (
r
<=
a
&
a
<
s
)
}
;
correctness
coherence
{
a
where
a
is
Element
of
ExtREAL
: (
r
<=
a
&
a
<
s
)
}
is
set
;
;
func
].
r
,
s
.]
->
set
equals
:: XXREAL_1:def 3
{
a
where
a
is
Element
of
ExtREAL
: (
r
<
a
&
a
<=
s
)
}
;
correctness
coherence
{
a
where
a
is
Element
of
ExtREAL
: (
r
<
a
&
a
<=
s
)
}
is
set
;
;
func
].
r
,
s
.[
->
set
equals
:: XXREAL_1:def 4
{
a
where
a
is
Element
of
ExtREAL
: (
r
<
a
&
a
<
s
)
}
;
correctness
coherence
{
a
where
a
is
Element
of
ExtREAL
: (
r
<
a
&
a
<
s
)
}
is
set
;
;
end;
::
deftheorem
defines
[.
XXREAL_1:def 1 :
for
r
,
s
being
ExtReal
holds
[.
r
,
s
.]
=
{
a
where
a
is
Element
of
ExtREAL
: (
r
<=
a
&
a
<=
s
)
}
;
::
deftheorem
defines
[.
XXREAL_1:def 2 :
for
r
,
s
being
ExtReal
holds
[.
r
,
s
.[
=
{
a
where
a
is
Element
of
ExtREAL
: (
r
<=
a
&
a
<
s
)
}
;
::
deftheorem
defines
].
XXREAL_1:def 3 :
for
r
,
s
being
ExtReal
holds
].
r
,
s
.]
=
{
a
where
a
is
Element
of
ExtREAL
: (
r
<
a
&
a
<=
s
)
}
;
::
deftheorem
defines
].
XXREAL_1:def 4 :
for
r
,
s
being
ExtReal
holds
].
r
,
s
.[
=
{
a
where
a
is
Element
of
ExtREAL
: (
r
<
a
&
a
<
s
)
}
;
theorem
Th1
:
:: XXREAL_1:1
for
r
,
s
,
t
being
ExtReal
holds
(
t
in
[.
r
,
s
.]
iff (
r
<=
t
&
t
<=
s
) )
proof
end;
theorem
Th2
:
:: XXREAL_1:2
for
r
,
s
,
t
being
ExtReal
holds
(
t
in
].
r
,
s
.]
iff (
r
<
t
&
t
<=
s
) )
proof
end;
theorem
Th3
:
:: XXREAL_1:3
for
r
,
s
,
t
being
ExtReal
holds
(
t
in
[.
r
,
s
.[
iff (
r
<=
t
&
t
<
s
) )
proof
end;
theorem
Th4
:
:: XXREAL_1:4
for
r
,
s
,
t
being
ExtReal
holds
(
t
in
].
r
,
s
.[
iff (
r
<
t
&
t
<
s
) )
proof
end;
registration
let
r
,
s
be
ExtReal
;
cluster
[.
r
,
s
.]
->
ext-real-membered
;
coherence
[.
r
,
s
.]
is
ext-real-membered
proof
end;
cluster
[.
r
,
s
.[
->
ext-real-membered
;
coherence
[.
r
,
s
.[
is
ext-real-membered
proof
end;
cluster
].
r
,
s
.]
->
ext-real-membered
;
coherence
].
r
,
s
.]
is
ext-real-membered
proof
end;
cluster
].
r
,
s
.[
->
ext-real-membered
;
coherence
].
r
,
s
.[
is
ext-real-membered
proof
end;
end;
theorem
Th5
:
:: XXREAL_1:5
for
x
being
set
for
p
,
q
being
ExtReal
holds
( not
x
in
[.
p
,
q
.]
or
x
in
].
p
,
q
.[
or
x
=
p
or
x
=
q
)
proof
end;
theorem
Th6
:
:: XXREAL_1:6
for
x
being
set
for
p
,
q
being
ExtReal
holds
( not
x
in
[.
p
,
q
.]
or
x
in
].
p
,
q
.]
or
x
=
p
)
proof
end;
theorem
Th7
:
:: XXREAL_1:7
for
x
being
set
for
p
,
q
being
ExtReal
holds
( not
x
in
[.
p
,
q
.]
or
x
in
[.
p
,
q
.[
or
x
=
q
)
proof
end;
theorem
Th8
:
:: XXREAL_1:8
for
x
being
set
for
p
,
q
being
ExtReal
holds
( not
x
in
[.
p
,
q
.[
or
x
in
].
p
,
q
.[
or
x
=
p
)
proof
end;
theorem
Th9
:
:: XXREAL_1:9
for
x
being
set
for
p
,
q
being
ExtReal
holds
( not
x
in
].
p
,
q
.]
or
x
in
].
p
,
q
.[
or
x
=
q
)
proof
end;
theorem
:: XXREAL_1:10
for
x
being
set
for
p
,
q
being
ExtReal
holds
( not
x
in
[.
p
,
q
.[
or (
x
in
].
p
,
q
.]
&
x
<>
q
) or
x
=
p
)
proof
end;
theorem
:: XXREAL_1:11
for
x
being
set
for
p
,
q
being
ExtReal
holds
( not
x
in
].
p
,
q
.]
or (
x
in
[.
p
,
q
.[
&
x
<>
p
) or
x
=
q
)
proof
end;
theorem
Th12
:
:: XXREAL_1:12
for
x
being
set
for
p
,
q
being
ExtReal
st
x
in
].
p
,
q
.]
holds
(
x
in
[.
p
,
q
.]
&
x
<>
p
)
proof
end;
theorem
Th13
:
:: XXREAL_1:13
for
x
being
set
for
p
,
q
being
ExtReal
st
x
in
[.
p
,
q
.[
holds
(
x
in
[.
p
,
q
.]
&
x
<>
q
)
proof
end;
theorem
Th14
:
:: XXREAL_1:14
for
x
being
set
for
p
,
q
being
ExtReal
st
x
in
].
p
,
q
.[
holds
(
x
in
[.
p
,
q
.[
&
x
<>
p
)
proof
end;
theorem
Th15
:
:: XXREAL_1:15
for
x
being
set
for
p
,
q
being
ExtReal
st
x
in
].
p
,
q
.[
holds
(
x
in
].
p
,
q
.]
&
x
<>
q
)
proof
end;
theorem
Th16
:
:: XXREAL_1:16
for
x
being
set
for
p
,
q
being
ExtReal
st
x
in
].
p
,
q
.[
holds
(
x
in
[.
p
,
q
.]
&
x
<>
p
&
x
<>
q
)
proof
end;
theorem
Th17
:
:: XXREAL_1:17
for
r
being
ExtReal
holds
[.
r
,
r
.]
=
{
r
}
proof
end;
theorem
Th18
:
:: XXREAL_1:18
for
r
being
ExtReal
holds
[.
r
,
r
.[
=
{}
proof
end;
theorem
Th19
:
:: XXREAL_1:19
for
r
being
ExtReal
holds
].
r
,
r
.]
=
{}
proof
end;
theorem
Th20
:
:: XXREAL_1:20
for
r
being
ExtReal
holds
].
r
,
r
.[
=
{}
proof
end;
registration
let
r
be
ExtReal
;
cluster
[.
r
,
r
.]
->
non
empty
;
coherence
not
[.
r
,
r
.]
is
empty
proof
end;
cluster
[.
r
,
r
.[
->
empty
;
coherence
[.
r
,
r
.[
is
empty
by
Th18
;
cluster
].
r
,
r
.]
->
empty
;
coherence
].
r
,
r
.]
is
empty
by
Th19
;
cluster
].
r
,
r
.[
->
empty
;
coherence
].
r
,
r
.[
is
empty
by
Th20
;
end;
theorem
Th21
:
:: XXREAL_1:21
for
p
,
q
being
ExtReal
holds
].
p
,
q
.[
c=
].
p
,
q
.]
proof
end;
theorem
Th22
:
:: XXREAL_1:22
for
p
,
q
being
ExtReal
holds
].
p
,
q
.[
c=
[.
p
,
q
.[
proof
end;
theorem
Th23
:
:: XXREAL_1:23
for
p
,
q
being
ExtReal
holds
].
p
,
q
.]
c=
[.
p
,
q
.]
proof
end;
theorem
Th24
:
:: XXREAL_1:24
for
p
,
q
being
ExtReal
holds
[.
p
,
q
.[
c=
[.
p
,
q
.]
proof
end;
theorem
Th25
:
:: XXREAL_1:25
for
p
,
q
being
ExtReal
holds
].
p
,
q
.[
c=
[.
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:26
for
p
,
q
being
ExtReal
st
p
<=
q
holds
].
q
,
p
.]
=
{}
proof
end;
theorem
Th27
:
:: XXREAL_1:27
for
p
,
q
being
ExtReal
st
p
<=
q
holds
[.
q
,
p
.[
=
{}
proof
end;
theorem
Th28
:
:: XXREAL_1:28
for
p
,
q
being
ExtReal
st
p
<=
q
holds
].
q
,
p
.[
=
{}
proof
end;
theorem
Th29
:
:: XXREAL_1:29
for
p
,
q
being
ExtReal
st
p
<
q
holds
[.
q
,
p
.]
=
{}
proof
end;
theorem
:: XXREAL_1:30
for
r
,
s
being
ExtReal
st
r
<=
s
holds
not
[.
r
,
s
.]
is
empty
by
Th1
;
theorem
:: XXREAL_1:31
for
p
,
q
being
ExtReal
st
p
<
q
holds
not
[.
p
,
q
.[
is
empty
by
Th3
;
theorem
:: XXREAL_1:32
for
p
,
q
being
ExtReal
st
p
<
q
holds
not
].
p
,
q
.]
is
empty
by
Th2
;
theorem
:: XXREAL_1:33
for
p
,
q
being
ExtReal
st
p
<
q
holds
not
].
p
,
q
.[
is
empty
proof
end;
theorem
Th34
:
:: XXREAL_1:34
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<=
r
&
s
<=
q
holds
[.
r
,
s
.]
c=
[.
p
,
q
.]
proof
end;
theorem
Th35
:
:: XXREAL_1:35
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<=
r
&
s
<=
q
holds
[.
r
,
s
.[
c=
[.
p
,
q
.]
proof
end;
theorem
Th36
:
:: XXREAL_1:36
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<=
r
&
s
<=
q
holds
].
r
,
s
.]
c=
[.
p
,
q
.]
proof
end;
theorem
Th37
:
:: XXREAL_1:37
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<=
r
&
s
<=
q
holds
].
r
,
s
.[
c=
[.
p
,
q
.]
proof
end;
theorem
Th38
:
:: XXREAL_1:38
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<=
r
&
s
<=
q
holds
[.
r
,
s
.[
c=
[.
p
,
q
.[
proof
end;
theorem
Th39
:
:: XXREAL_1:39
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<
r
&
s
<=
q
holds
[.
r
,
s
.]
c=
].
p
,
q
.]
proof
end;
theorem
Th40
:
:: XXREAL_1:40
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<
r
&
s
<=
q
holds
[.
r
,
s
.[
c=
].
p
,
q
.]
proof
end;
theorem
Th41
:
:: XXREAL_1:41
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<=
r
&
s
<=
q
holds
].
r
,
s
.[
c=
].
p
,
q
.]
proof
end;
theorem
Th42
:
:: XXREAL_1:42
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<=
r
&
s
<=
q
holds
].
r
,
s
.]
c=
].
p
,
q
.]
proof
end;
theorem
Th43
:
:: XXREAL_1:43
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<=
r
&
s
<
q
holds
[.
r
,
s
.]
c=
[.
p
,
q
.[
proof
end;
theorem
Th44
:
:: XXREAL_1:44
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<=
r
&
s
<
q
holds
].
r
,
s
.]
c=
[.
p
,
q
.[
proof
end;
theorem
Th45
:
:: XXREAL_1:45
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<=
r
&
s
<=
q
holds
].
r
,
s
.[
c=
[.
p
,
q
.[
proof
end;
theorem
Th46
:
:: XXREAL_1:46
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<=
r
&
s
<=
q
holds
].
r
,
s
.[
c=
].
p
,
q
.[
proof
end;
theorem
Th47
:
:: XXREAL_1:47
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<
r
&
s
<
q
holds
[.
r
,
s
.]
c=
].
p
,
q
.[
proof
end;
theorem
Th48
:
:: XXREAL_1:48
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<
r
&
s
<=
q
holds
[.
r
,
s
.[
c=
].
p
,
q
.[
proof
end;
theorem
Th49
:
:: XXREAL_1:49
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<=
r
&
s
<
q
holds
].
r
,
s
.]
c=
].
p
,
q
.[
proof
end;
theorem
Th50
:
:: XXREAL_1:50
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
s
&
[.
r
,
s
.]
c=
[.
p
,
q
.]
holds
(
p
<=
r
&
s
<=
q
)
proof
end;
theorem
Th51
:
:: XXREAL_1:51
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
&
].
r
,
s
.[
c=
[.
p
,
q
.]
holds
(
p
<=
r
&
s
<=
q
)
proof
end;
theorem
Th52
:
:: XXREAL_1:52
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
&
[.
r
,
s
.[
c=
[.
p
,
q
.]
holds
(
p
<=
r
&
s
<=
q
)
proof
end;
theorem
Th53
:
:: XXREAL_1:53
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
&
].
r
,
s
.]
c=
[.
p
,
q
.]
holds
(
p
<=
r
&
s
<=
q
)
proof
end;
theorem
Th54
:
:: XXREAL_1:54
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
s
&
[.
r
,
s
.]
c=
[.
p
,
q
.[
holds
(
p
<=
r
&
s
<
q
)
proof
end;
theorem
Th55
:
:: XXREAL_1:55
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
&
[.
r
,
s
.[
c=
[.
p
,
q
.[
holds
(
p
<=
r
&
s
<=
q
)
proof
end;
theorem
Th56
:
:: XXREAL_1:56
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
&
].
r
,
s
.[
c=
[.
p
,
q
.[
holds
(
p
<=
r
&
s
<=
q
)
proof
end;
theorem
Th57
:
:: XXREAL_1:57
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
&
].
r
,
s
.]
c=
[.
p
,
q
.[
holds
(
p
<=
r
&
s
<
q
)
proof
end;
theorem
Th58
:
:: XXREAL_1:58
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
s
&
[.
r
,
s
.]
c=
].
p
,
q
.]
holds
(
p
<
r
&
s
<=
q
)
proof
end;
theorem
Th59
:
:: XXREAL_1:59
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
&
].
r
,
s
.[
c=
].
p
,
q
.]
holds
(
p
<=
r
&
s
<=
q
)
proof
end;
theorem
Th60
:
:: XXREAL_1:60
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
&
[.
r
,
s
.[
c=
].
p
,
q
.]
holds
(
p
<
r
&
s
<=
q
)
proof
end;
theorem
Th61
:
:: XXREAL_1:61
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
&
].
r
,
s
.]
c=
].
p
,
q
.]
holds
(
p
<=
r
&
s
<=
q
)
proof
end;
theorem
Th62
:
:: XXREAL_1:62
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
s
&
[.
r
,
s
.]
c=
].
p
,
q
.[
holds
(
p
<
r
&
s
<
q
)
proof
end;
theorem
Th63
:
:: XXREAL_1:63
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
&
].
r
,
s
.[
c=
].
p
,
q
.[
holds
(
p
<=
r
&
s
<=
q
)
proof
end;
theorem
Th64
:
:: XXREAL_1:64
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
&
[.
r
,
s
.[
c=
].
p
,
q
.[
holds
(
p
<
r
&
s
<=
q
)
proof
end;
theorem
Th65
:
:: XXREAL_1:65
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
&
].
r
,
s
.]
c=
].
p
,
q
.[
holds
(
p
<=
r
&
s
<
q
)
proof
end;
theorem
:: XXREAL_1:66
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<=
q
&
[.
p
,
q
.]
=
[.
r
,
s
.]
holds
(
p
=
r
&
q
=
s
)
proof
end;
theorem
:: XXREAL_1:67
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<
q
&
].
p
,
q
.[
=
].
r
,
s
.[
holds
(
p
=
r
&
q
=
s
)
proof
end;
theorem
:: XXREAL_1:68
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<
q
&
].
p
,
q
.]
=
].
r
,
s
.]
holds
(
p
=
r
&
q
=
s
)
proof
end;
theorem
:: XXREAL_1:69
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<
q
&
[.
p
,
q
.[
=
[.
r
,
s
.[
holds
(
p
=
r
&
q
=
s
)
proof
end;
theorem
:: XXREAL_1:70
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
s
holds
[.
r
,
s
.]
<>
].
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:71
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
s
holds
[.
r
,
s
.]
<>
[.
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:72
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
s
holds
[.
r
,
s
.]
<>
].
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:73
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
holds
[.
r
,
s
.[
<>
[.
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:74
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
holds
[.
r
,
s
.[
<>
].
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:75
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
holds
[.
r
,
s
.[
<>
].
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:76
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
holds
].
r
,
s
.]
<>
[.
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:77
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
holds
].
r
,
s
.]
<>
[.
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:78
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
holds
].
r
,
s
.]
<>
].
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:79
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
holds
].
r
,
s
.[
<>
[.
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:80
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
holds
].
r
,
s
.[
<>
].
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:81
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
holds
].
r
,
s
.[
<>
[.
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:82
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
s
&
[.
r
,
s
.]
c<
[.
p
,
q
.]
& not
p
<
r
holds
s
<
q
proof
end;
theorem
:: XXREAL_1:83
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
&
].
r
,
s
.[
c=
[.
p
,
q
.]
holds
[.
r
,
s
.]
c=
[.
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:84
for
p
,
r
,
s
being
ExtReal
st
r
<
s
holds
[.
s
,
p
.[
c=
].
r
,
p
.[
proof
end;
theorem
Th85
:
:: XXREAL_1:85
for
r
,
s
being
ExtReal
st
s
<=
r
holds
(
[.
r
,
s
.]
c=
{
r
}
&
[.
r
,
s
.]
c=
{
s
}
)
proof
end;
theorem
:: XXREAL_1:86
for
r
,
s
being
ExtReal
holds
].
r
,
s
.[
misses
{
r
,
s
}
proof
end;
theorem
:: XXREAL_1:87
for
r
,
s
being
ExtReal
holds
[.
r
,
s
.[
misses
{
s
}
proof
end;
theorem
:: XXREAL_1:88
for
r
,
s
being
ExtReal
holds
].
r
,
s
.]
misses
{
r
}
proof
end;
theorem
:: XXREAL_1:89
for
p
,
q
,
r
,
s
being
ExtReal
st
s
<=
p
holds
[.
r
,
s
.]
misses
].
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:90
for
p
,
q
,
r
,
s
being
ExtReal
st
s
<=
p
holds
[.
r
,
s
.]
misses
].
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:91
for
p
,
q
,
r
,
s
being
ExtReal
st
s
<=
p
holds
].
r
,
s
.]
misses
].
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:92
for
p
,
q
,
r
,
s
being
ExtReal
st
s
<=
p
holds
].
r
,
s
.]
misses
].
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:93
for
p
,
q
,
r
,
s
being
ExtReal
st
s
<=
p
holds
].
r
,
s
.[
misses
[.
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:94
for
p
,
q
,
r
,
s
being
ExtReal
st
s
<=
p
holds
].
r
,
s
.[
misses
[.
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:95
for
p
,
q
,
r
,
s
being
ExtReal
st
s
<=
p
holds
[.
r
,
s
.[
misses
[.
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:96
for
p
,
q
,
r
,
s
being
ExtReal
st
s
<=
p
holds
[.
r
,
s
.[
misses
[.
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:97
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
p
&
r
<
s
holds
not
].
r
,
s
.[
c=
[.
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:98
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
p
&
r
<
s
holds
not
[.
r
,
s
.[
c=
[.
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:99
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
p
&
r
<
s
holds
not
].
r
,
s
.]
c=
[.
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:100
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
p
&
r
<=
s
holds
not
[.
r
,
s
.]
c=
[.
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:101
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
p
&
r
<
s
holds
not
].
r
,
s
.[
c=
[.
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:102
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
p
&
r
<
s
holds
not
].
r
,
s
.]
c=
[.
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:103
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
p
&
r
<
s
holds
not
[.
r
,
s
.[
c=
[.
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:104
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
p
&
r
<=
s
holds
not
[.
r
,
s
.]
c=
[.
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:105
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
p
&
r
<
s
holds
not
].
r
,
s
.[
c=
].
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:106
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
p
&
r
<
s
holds
not
[.
r
,
s
.[
c=
].
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:107
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
p
&
r
<
s
holds
not
].
r
,
s
.]
c=
].
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:108
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
p
&
r
<=
s
holds
not
[.
r
,
s
.]
c=
].
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:109
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
p
&
r
<=
s
holds
not
[.
r
,
s
.]
c=
].
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:110
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
p
&
r
<
s
holds
not
[.
r
,
s
.[
c=
].
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:111
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
p
&
r
<
s
holds
not
].
r
,
s
.]
c=
].
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:112
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
p
&
r
<
s
holds
not
].
r
,
s
.[
c=
].
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:113
for
p
,
q
,
r
,
s
being
ExtReal
st
q
<
s
&
r
<
s
holds
not
].
r
,
s
.[
c=
[.
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:114
for
p
,
q
,
r
,
s
being
ExtReal
st
q
<
s
&
r
<
s
holds
not
[.
r
,
s
.[
c=
[.
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:115
for
p
,
q
,
r
,
s
being
ExtReal
st
q
<
s
&
r
<
s
holds
not
].
r
,
s
.]
c=
[.
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:116
for
p
,
q
,
r
,
s
being
ExtReal
st
q
<
s
&
r
<=
s
holds
not
[.
r
,
s
.]
c=
[.
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:117
for
p
,
q
,
r
,
s
being
ExtReal
st
q
<
s
&
r
<
s
holds
not
].
r
,
s
.[
c=
[.
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:118
for
p
,
q
,
r
,
s
being
ExtReal
st
q
<=
s
&
r
<
s
holds
not
].
r
,
s
.]
c=
[.
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:119
for
p
,
q
,
r
,
s
being
ExtReal
st
q
<
s
&
r
<
s
holds
not
[.
r
,
s
.[
c=
[.
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:120
for
p
,
q
,
r
,
s
being
ExtReal
st
q
<
s
&
r
<
s
holds
not
].
r
,
s
.[
c=
].
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:121
for
p
,
q
,
r
,
s
being
ExtReal
st
q
<
s
&
r
<=
s
holds
not
[.
r
,
s
.]
c=
].
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:122
for
p
,
q
,
r
,
s
being
ExtReal
st
q
<
s
&
r
<
s
holds
not
[.
r
,
s
.[
c=
].
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:123
for
p
,
q
,
r
,
s
being
ExtReal
st
q
<
s
&
r
<
s
holds
not
].
r
,
s
.]
c=
].
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:124
for
p
,
q
,
r
,
s
being
ExtReal
st
q
<=
s
&
r
<=
s
holds
not
[.
r
,
s
.]
c=
].
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:125
for
p
,
q
,
r
,
s
being
ExtReal
st
q
<
s
&
r
<
s
holds
not
[.
r
,
s
.[
c=
].
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:126
for
p
,
q
,
r
,
s
being
ExtReal
st
q
<=
s
&
r
<
s
holds
not
].
r
,
s
.]
c=
].
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:127
for
p
,
q
,
r
,
s
being
ExtReal
st
q
<
s
&
r
<
s
holds
not
].
r
,
s
.[
c=
].
p
,
q
.[
proof
end;
theorem
Th128
:
:: XXREAL_1:128
for
r
,
s
being
ExtReal
st
r
<=
s
holds
[.
r
,
s
.]
=
].
r
,
s
.[
\/
{
r
,
s
}
proof
end;
theorem
Th129
:
:: XXREAL_1:129
for
r
,
s
being
ExtReal
st
r
<=
s
holds
[.
r
,
s
.]
=
[.
r
,
s
.[
\/
{
s
}
proof
end;
theorem
Th130
:
:: XXREAL_1:130
for
r
,
s
being
ExtReal
st
r
<=
s
holds
[.
r
,
s
.]
=
{
r
}
\/
].
r
,
s
.]
proof
end;
theorem
Th131
:
:: XXREAL_1:131
for
r
,
s
being
ExtReal
st
r
<
s
holds
[.
r
,
s
.[
=
{
r
}
\/
].
r
,
s
.[
proof
end;
theorem
Th132
:
:: XXREAL_1:132
for
r
,
s
being
ExtReal
st
r
<
s
holds
].
r
,
s
.]
=
].
r
,
s
.[
\/
{
s
}
proof
end;
theorem
:: XXREAL_1:133
for
r
,
s
being
ExtReal
st
r
<=
s
holds
[.
r
,
s
.]
\
{
r
,
s
}
=
].
r
,
s
.[
proof
end;
theorem
:: XXREAL_1:134
for
r
,
s
being
ExtReal
st
r
<=
s
holds
[.
r
,
s
.]
\
{
r
}
=
].
r
,
s
.]
proof
end;
theorem
:: XXREAL_1:135
for
r
,
s
being
ExtReal
st
r
<=
s
holds
[.
r
,
s
.]
\
{
s
}
=
[.
r
,
s
.[
proof
end;
theorem
:: XXREAL_1:136
for
r
,
s
being
ExtReal
st
r
<
s
holds
[.
r
,
s
.[
\
{
r
}
=
].
r
,
s
.[
proof
end;
theorem
:: XXREAL_1:137
for
r
,
s
being
ExtReal
st
r
<
s
holds
].
r
,
s
.]
\
{
s
}
=
].
r
,
s
.[
proof
end;
theorem
:: XXREAL_1:138
for
r
,
s
,
t
being
ExtReal
st
r
<
s
&
s
<
t
holds
].
r
,
s
.]
/\
[.
s
,
t
.[
=
{
s
}
proof
end;
theorem
:: XXREAL_1:139
for
p
,
q
,
r
,
s
being
ExtReal
holds
[.
r
,
s
.[
/\
[.
p
,
q
.[
=
[.
(
max
(
r
,
p
)
)
,
(
min
(
s
,
q
)
)
.[
proof
end;
theorem
:: XXREAL_1:140
for
p
,
q
,
r
,
s
being
ExtReal
holds
[.
r
,
s
.]
/\
[.
p
,
q
.]
=
[.
(
max
(
r
,
p
)
)
,
(
min
(
s
,
q
)
)
.]
proof
end;
theorem
:: XXREAL_1:141
for
p
,
q
,
r
,
s
being
ExtReal
holds
].
r
,
s
.]
/\
].
p
,
q
.]
=
].
(
max
(
r
,
p
)
)
,
(
min
(
s
,
q
)
)
.]
proof
end;
theorem
:: XXREAL_1:142
for
p
,
q
,
r
,
s
being
ExtReal
holds
].
r
,
s
.[
/\
].
p
,
q
.[
=
].
(
max
(
r
,
p
)
)
,
(
min
(
s
,
q
)
)
.[
proof
end;
theorem
:: XXREAL_1:143
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
p
&
s
<=
q
holds
[.
r
,
s
.]
/\
[.
p
,
q
.]
=
[.
p
,
s
.]
proof
end;
theorem
:: XXREAL_1:144
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
p
&
s
<=
q
holds
[.
r
,
s
.[
/\
[.
p
,
q
.]
=
[.
p
,
s
.[
proof
end;
theorem
:: XXREAL_1:145
for
p
,
q
,
r
,
s
being
ExtReal
st
r
>=
p
&
s
>
q
holds
[.
r
,
s
.[
/\
[.
p
,
q
.]
=
[.
r
,
q
.]
proof
end;
theorem
:: XXREAL_1:146
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
p
&
s
<=
q
holds
].
r
,
s
.]
/\
[.
p
,
q
.]
=
[.
p
,
s
.]
proof
end;
theorem
:: XXREAL_1:147
for
p
,
q
,
r
,
s
being
ExtReal
st
r
>=
p
&
s
>=
q
holds
].
r
,
s
.]
/\
[.
p
,
q
.]
=
].
r
,
q
.]
proof
end;
theorem
:: XXREAL_1:148
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
p
&
s
<=
q
holds
].
r
,
s
.[
/\
[.
p
,
q
.]
=
[.
p
,
s
.[
proof
end;
theorem
:: XXREAL_1:149
for
p
,
q
,
r
,
s
being
ExtReal
st
r
>=
p
&
s
>
q
holds
].
r
,
s
.[
/\
[.
p
,
q
.]
=
].
r
,
q
.]
proof
end;
theorem
:: XXREAL_1:150
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
p
&
s
<=
q
holds
[.
r
,
s
.[
/\
[.
p
,
q
.[
=
[.
p
,
s
.[
proof
end;
theorem
:: XXREAL_1:151
for
p
,
q
,
r
,
s
being
ExtReal
st
r
>=
p
&
s
>=
q
holds
[.
r
,
s
.[
/\
[.
p
,
q
.[
=
[.
r
,
q
.[
proof
end;
theorem
Th152
:
:: XXREAL_1:152
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
p
&
s
<
q
holds
].
r
,
s
.]
/\
[.
p
,
q
.[
=
[.
p
,
s
.]
proof
end;
theorem
:: XXREAL_1:153
for
p
,
q
,
r
,
s
being
ExtReal
st
r
>=
p
&
s
>=
q
holds
].
r
,
s
.]
/\
[.
p
,
q
.[
=
].
r
,
q
.[
proof
end;
theorem
Th154
:
:: XXREAL_1:154
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
p
&
s
<=
q
holds
].
r
,
s
.[
/\
[.
p
,
q
.[
=
[.
p
,
s
.[
proof
end;
theorem
:: XXREAL_1:155
for
p
,
q
,
r
,
s
being
ExtReal
st
r
>=
p
&
s
>=
q
holds
].
r
,
s
.[
/\
[.
p
,
q
.[
=
].
r
,
q
.[
proof
end;
theorem
:: XXREAL_1:156
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
p
&
s
<=
q
holds
].
r
,
s
.]
/\
].
p
,
q
.]
=
].
p
,
s
.]
proof
end;
theorem
:: XXREAL_1:157
for
p
,
q
,
r
,
s
being
ExtReal
st
r
>=
p
&
s
>=
q
holds
].
r
,
s
.]
/\
].
p
,
q
.]
=
].
r
,
q
.]
proof
end;
theorem
:: XXREAL_1:158
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
p
&
s
<=
q
holds
].
r
,
s
.[
/\
].
p
,
q
.]
=
].
p
,
s
.[
proof
end;
theorem
Th159
:
:: XXREAL_1:159
for
p
,
q
,
r
,
s
being
ExtReal
st
r
>=
p
&
s
>
q
holds
].
r
,
s
.[
/\
].
p
,
q
.]
=
].
r
,
q
.]
proof
end;
theorem
Th160
:
:: XXREAL_1:160
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
p
&
s
<=
q
holds
].
r
,
s
.[
/\
].
p
,
q
.[
=
].
p
,
s
.[
proof
end;
theorem
:: XXREAL_1:161
for
p
,
q
,
r
,
s
being
ExtReal
holds
[.
r
,
s
.[
\/
[.
p
,
q
.[
c=
[.
(
min
(
r
,
p
)
)
,
(
max
(
s
,
q
)
)
.[
proof
end;
theorem
:: XXREAL_1:162
for
p
,
q
,
r
,
s
being
ExtReal
st
[.
r
,
s
.[
meets
[.
p
,
q
.[
holds
[.
r
,
s
.[
\/
[.
p
,
q
.[
=
[.
(
min
(
r
,
p
)
)
,
(
max
(
s
,
q
)
)
.[
proof
end;
theorem
:: XXREAL_1:163
for
p
,
q
,
r
,
s
being
ExtReal
holds
].
r
,
s
.]
\/
].
p
,
q
.]
c=
].
(
min
(
r
,
p
)
)
,
(
max
(
s
,
q
)
)
.]
proof
end;
theorem
:: XXREAL_1:164
for
p
,
q
,
r
,
s
being
ExtReal
st
].
r
,
s
.]
meets
].
p
,
q
.]
holds
].
r
,
s
.]
\/
].
p
,
q
.]
=
].
(
min
(
r
,
p
)
)
,
(
max
(
s
,
q
)
)
.]
proof
end;
theorem
:: XXREAL_1:165
for
r
,
s
,
t
being
ExtReal
st
r
<=
s
&
s
<=
t
holds
[.
r
,
s
.]
\/
[.
s
,
t
.]
=
[.
r
,
t
.]
proof
end;
theorem
Th166
:
:: XXREAL_1:166
for
r
,
s
,
t
being
ExtReal
st
r
<=
s
&
s
<=
t
holds
[.
r
,
s
.[
\/
[.
s
,
t
.]
=
[.
r
,
t
.]
proof
end;
theorem
Th167
:
:: XXREAL_1:167
for
r
,
s
,
t
being
ExtReal
st
r
<=
s
&
s
<=
t
holds
[.
r
,
s
.]
\/
].
s
,
t
.]
=
[.
r
,
t
.]
proof
end;
theorem
:: XXREAL_1:168
for
r
,
s
,
t
being
ExtReal
st
r
<=
s
&
s
<=
t
holds
[.
r
,
s
.[
\/
[.
s
,
t
.[
=
[.
r
,
t
.[
proof
end;
theorem
Th169
:
:: XXREAL_1:169
for
r
,
s
,
t
being
ExtReal
st
r
<=
s
&
s
<
t
holds
[.
r
,
s
.]
\/
].
s
,
t
.[
=
[.
r
,
t
.[
proof
end;
theorem
:: XXREAL_1:170
for
r
,
s
,
t
being
ExtReal
st
r
<=
s
&
s
<=
t
holds
].
r
,
s
.]
\/
].
s
,
t
.]
=
].
r
,
t
.]
proof
end;
theorem
Th171
:
:: XXREAL_1:171
for
r
,
s
,
t
being
ExtReal
st
r
<=
s
&
s
<
t
holds
].
r
,
s
.]
\/
].
s
,
t
.[
=
].
r
,
t
.[
proof
end;
theorem
:: XXREAL_1:172
for
r
,
s
,
t
being
ExtReal
st
r
<
s
&
s
<
t
holds
].
r
,
s
.]
\/
[.
s
,
t
.[
=
].
r
,
t
.[
proof
end;
theorem
Th173
:
:: XXREAL_1:173
for
r
,
s
,
t
being
ExtReal
st
r
<
s
&
s
<
t
holds
].
r
,
s
.[
\/
[.
s
,
t
.[
=
].
r
,
t
.[
proof
end;
theorem
Th174
:
:: XXREAL_1:174
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<=
s
&
r
<=
q
&
s
<=
r
holds
[.
p
,
r
.]
\/
[.
s
,
q
.]
=
[.
p
,
q
.]
proof
end;
theorem
Th175
:
:: XXREAL_1:175
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<=
s
&
r
<=
q
&
s
<
r
holds
[.
p
,
r
.[
\/
].
s
,
q
.]
=
[.
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:176
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<=
s
&
s
<=
r
&
r
<
q
holds
[.
p
,
r
.]
\/
[.
s
,
q
.[
=
[.
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:177
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<
s
&
r
<=
q
&
s
<=
r
holds
].
p
,
r
.]
\/
[.
s
,
q
.]
=
].
p
,
q
.]
proof
end;
theorem
Th178
:
:: XXREAL_1:178
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<
s
&
r
<
q
&
s
<=
r
holds
].
p
,
r
.]
\/
[.
s
,
q
.[
=
].
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:179
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<=
r
&
p
<=
s
&
r
<=
q
&
s
<=
q
holds
(
[.
p
,
r
.[
\/
[.
r
,
s
.]
)
\/
].
s
,
q
.]
=
[.
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:180
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<
r
&
p
<
s
&
r
<
q
&
s
<
q
holds
(
].
p
,
r
.]
\/
].
r
,
s
.[
)
\/
[.
s
,
q
.[
=
].
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:181
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<=
r
&
r
<=
s
&
s
<=
q
holds
(
[.
p
,
r
.]
\/
].
r
,
s
.[
)
\/
[.
s
,
q
.]
=
[.
p
,
q
.]
proof
end;
theorem
Th182
:
:: XXREAL_1:182
for
r
,
s
,
t
being
ExtReal
st
r
<=
s
holds
[.
r
,
t
.]
\
[.
r
,
s
.]
=
].
s
,
t
.]
proof
end;
theorem
Th183
:
:: XXREAL_1:183
for
r
,
s
,
t
being
ExtReal
st
r
<=
s
holds
[.
r
,
t
.[
\
[.
r
,
s
.]
=
].
s
,
t
.[
proof
end;
theorem
Th184
:
:: XXREAL_1:184
for
r
,
s
,
t
being
ExtReal
st
r
<
s
holds
[.
r
,
t
.]
\
[.
r
,
s
.[
=
[.
s
,
t
.]
proof
end;
theorem
Th185
:
:: XXREAL_1:185
for
r
,
s
,
t
being
ExtReal
st
r
<
s
holds
[.
r
,
t
.[
\
[.
r
,
s
.[
=
[.
s
,
t
.[
proof
end;
theorem
Th186
:
:: XXREAL_1:186
for
r
,
s
,
t
being
ExtReal
st
r
<=
s
holds
[.
r
,
t
.]
\
[.
r
,
s
.]
=
].
s
,
t
.]
proof
end;
theorem
Th187
:
:: XXREAL_1:187
for
r
,
s
,
t
being
ExtReal
st
r
<
s
holds
].
r
,
t
.[
\
].
r
,
s
.]
=
].
s
,
t
.[
proof
end;
theorem
Th188
:
:: XXREAL_1:188
for
r
,
s
,
t
being
ExtReal
st
r
<
s
holds
].
r
,
t
.]
\
].
r
,
s
.[
=
[.
s
,
t
.]
proof
end;
theorem
Th189
:
:: XXREAL_1:189
for
r
,
s
,
t
being
ExtReal
st
r
<
s
holds
].
r
,
t
.[
\
].
r
,
s
.[
=
[.
s
,
t
.[
proof
end;
theorem
Th190
:
:: XXREAL_1:190
for
r
,
s
,
t
being
ExtReal
st
s
<=
t
holds
[.
r
,
t
.]
\
[.
s
,
t
.]
=
[.
r
,
s
.[
proof
end;
theorem
Th191
:
:: XXREAL_1:191
for
r
,
s
,
t
being
ExtReal
st
s
<=
t
holds
].
r
,
t
.]
\
[.
s
,
t
.]
=
].
r
,
s
.[
proof
end;
theorem
Th192
:
:: XXREAL_1:192
for
r
,
s
,
t
being
ExtReal
st
s
<
t
holds
[.
r
,
t
.]
\
].
s
,
t
.]
=
[.
r
,
s
.]
proof
end;
theorem
Th193
:
:: XXREAL_1:193
for
r
,
s
,
t
being
ExtReal
st
s
<
t
holds
].
r
,
t
.]
\
].
s
,
t
.]
=
].
r
,
s
.]
proof
end;
theorem
Th194
:
:: XXREAL_1:194
for
r
,
s
,
t
being
ExtReal
st
s
<
t
holds
[.
r
,
t
.[
\
[.
s
,
t
.[
=
[.
r
,
s
.[
proof
end;
theorem
Th195
:
:: XXREAL_1:195
for
r
,
s
,
t
being
ExtReal
st
s
<
t
holds
].
r
,
t
.[
\
[.
s
,
t
.[
=
].
r
,
s
.[
proof
end;
theorem
Th196
:
:: XXREAL_1:196
for
r
,
s
,
t
being
ExtReal
st
s
<
t
holds
[.
r
,
t
.[
\
].
s
,
t
.[
=
[.
r
,
s
.]
proof
end;
theorem
Th197
:
:: XXREAL_1:197
for
r
,
s
,
t
being
ExtReal
st
s
<
t
holds
].
r
,
t
.[
\
].
s
,
t
.[
=
].
r
,
s
.]
proof
end;
theorem
:: XXREAL_1:198
for
p
,
q
,
r
,
s
being
ExtReal
st
[.
p
,
q
.[
meets
[.
r
,
s
.[
holds
[.
p
,
q
.[
\
[.
r
,
s
.[
=
[.
p
,
r
.[
\/
[.
s
,
q
.[
proof
end;
theorem
:: XXREAL_1:199
for
p
,
q
,
r
,
s
being
ExtReal
st
].
p
,
q
.]
meets
].
r
,
s
.]
holds
].
p
,
q
.]
\
].
r
,
s
.]
=
].
p
,
r
.]
\/
].
s
,
q
.]
proof
end;
theorem
:: XXREAL_1:200
for
p
,
q
,
r
,
s
being
ExtReal
st
p
<=
r
&
s
<=
q
holds
[.
p
,
q
.]
\
(
[.
p
,
r
.]
\/
[.
s
,
q
.]
)
=
].
r
,
s
.[
proof
end;
theorem
:: XXREAL_1:201
for
r
,
s
,
t
being
ExtReal
st
r
<=
s
&
s
<=
t
holds
[.
r
,
t
.]
\
{
s
}
=
[.
r
,
s
.[
\/
].
s
,
t
.]
proof
end;
theorem
:: XXREAL_1:202
for
r
,
s
,
t
being
ExtReal
st
r
<=
s
&
s
<
t
holds
[.
r
,
t
.[
\
{
s
}
=
[.
r
,
s
.[
\/
].
s
,
t
.[
proof
end;
theorem
:: XXREAL_1:203
for
r
,
s
,
t
being
ExtReal
st
r
<
s
&
s
<=
t
holds
].
r
,
t
.]
\
{
s
}
=
].
r
,
s
.[
\/
].
s
,
t
.]
proof
end;
theorem
:: XXREAL_1:204
for
r
,
s
,
t
being
ExtReal
st
r
<
s
&
s
<
t
holds
].
r
,
t
.[
\
{
s
}
=
].
r
,
s
.[
\/
].
s
,
t
.[
proof
end;
theorem
:: XXREAL_1:205
for
r
,
s
,
t
being
ExtReal
holds not
s
in
].
r
,
s
.[
\/
].
s
,
t
.[
proof
end;
theorem
:: XXREAL_1:206
for
r
,
s
,
t
being
ExtReal
holds not
s
in
[.
r
,
s
.[
\/
].
s
,
t
.[
proof
end;
theorem
:: XXREAL_1:207
for
r
,
s
,
t
being
ExtReal
holds not
s
in
].
r
,
s
.[
\/
].
s
,
t
.]
proof
end;
theorem
:: XXREAL_1:208
for
r
,
s
,
t
being
ExtReal
holds not
s
in
[.
r
,
s
.[
\/
].
s
,
t
.]
proof
end;
theorem
:: XXREAL_1:209
[.
-infty
,
+infty
.]
=
ExtREAL
proof
end;
theorem
:: XXREAL_1:210
for
p
being
ExtReal
holds
].
p
,
-infty
.[
=
{}
proof
end;
theorem
:: XXREAL_1:211
for
p
being
ExtReal
holds
[.
p
,
-infty
.[
=
{}
proof
end;
theorem
:: XXREAL_1:212
for
p
being
ExtReal
holds
].
p
,
-infty
.]
=
{}
proof
end;
theorem
:: XXREAL_1:213
for
p
being
ExtReal
st
p
<>
-infty
holds
[.
p
,
-infty
.]
=
{}
proof
end;
theorem
:: XXREAL_1:214
for
p
being
ExtReal
holds
].
+infty
,
p
.[
=
{}
proof
end;
theorem
:: XXREAL_1:215
for
p
being
ExtReal
holds
[.
+infty
,
p
.[
=
{}
proof
end;
theorem
:: XXREAL_1:216
for
p
being
ExtReal
holds
].
+infty
,
p
.]
=
{}
proof
end;
theorem
:: XXREAL_1:217
for
p
being
ExtReal
st
p
<>
+infty
holds
[.
+infty
,
p
.]
=
{}
proof
end;
theorem
:: XXREAL_1:218
for
p
,
q
being
ExtReal
st
p
>
q
holds
p
in
].
q
,
+infty
.]
by
XXREAL_0:3
,
Th2
;
theorem
:: XXREAL_1:219
for
p
,
q
being
ExtReal
st
q
<=
p
holds
p
in
[.
q
,
+infty
.]
proof
end;
theorem
:: XXREAL_1:220
for
p
,
q
being
ExtReal
st
p
<=
q
holds
p
in
[.
-infty
,
q
.]
proof
end;
theorem
:: XXREAL_1:221
for
p
,
q
being
ExtReal
st
p
<
q
holds
p
in
[.
-infty
,
q
.[
by
XXREAL_0:5
,
Th3
;
theorem
:: XXREAL_1:222
for
p
,
q
being
ExtReal
st
p
<=
q
holds
[.
p
,
q
.]
=
[.
p
,
q
.]
\/
[.
q
,
p
.]
proof
end;
theorem
:: XXREAL_1:223
for
p
,
r
,
s
,
t
being
ExtReal
st
r
<=
s
&
s
<=
t
holds
not
r
in
].
s
,
t
.[
\/
].
t
,
p
.[
proof
end;
:: from LIMFUNC1, 2008.06.12, A.T.
theorem
Th224
:
:: XXREAL_1:224
REAL
=
].
-infty
,
+infty
.[
proof
end;
theorem
Th225
:
:: XXREAL_1:225
for
p
,
q
being
ExtReal
holds
].
p
,
q
.[
c=
REAL
proof
end;
theorem
Th226
:
:: XXREAL_1:226
for
p
,
q
being
ExtReal
st
p
in
REAL
holds
[.
p
,
q
.[
c=
REAL
proof
end;
theorem
Th227
:
:: XXREAL_1:227
for
p
,
q
being
ExtReal
st
q
in
REAL
holds
].
p
,
q
.]
c=
REAL
proof
end;
theorem
Th228
:
:: XXREAL_1:228
for
p
,
q
being
ExtReal
st
p
in
REAL
&
q
in
REAL
holds
[.
p
,
q
.]
c=
REAL
proof
end;
registration
let
p
,
q
be
ExtReal
;
cluster
].
p
,
q
.[
->
real-membered
;
coherence
].
p
,
q
.[
is
real-membered
by
Th225
,
MEMBERED:21
;
end;
registration
let
p
be
Real
;
let
q
be
ExtReal
;
cluster
[.
p
,
q
.[
->
real-membered
;
coherence
[.
p
,
q
.[
is
real-membered
proof
end;
end;
registration
let
q
be
Real
;
let
p
be
ExtReal
;
cluster
].
p
,
q
.]
->
real-membered
;
coherence
].
p
,
q
.]
is
real-membered
proof
end;
end;
registration
let
p
,
q
be
Real
;
cluster
[.
p
,
q
.]
->
real-membered
;
coherence
[.
p
,
q
.]
is
real-membered
proof
end;
end;
:: from LIMFUNC1,2008.06.13, A.T.
theorem
:: XXREAL_1:229
for
s
being
ExtReal
holds
].
-infty
,
s
.[
=
{
g
where
g
is
Real
:
g
<
s
}
proof
end;
theorem
:: XXREAL_1:230
for
s
being
ExtReal
holds
].
s
,
+infty
.[
=
{
g
where
g
is
Real
:
s
<
g
}
proof
end;
theorem
:: XXREAL_1:231
for
s
being
Real
holds
].
-infty
,
s
.]
=
{
g
where
g
is
Real
:
g
<=
s
}
proof
end;
theorem
:: XXREAL_1:232
for
s
being
Real
holds
[.
s
,
+infty
.[
=
{
g
where
g
is
Real
:
s
<=
g
}
proof
end;
theorem
:: XXREAL_1:233
for
u
being
ExtReal
for
x
being
Real
holds
(
x
in
].
-infty
,
u
.[
iff
x
<
u
)
proof
end;
theorem
:: XXREAL_1:234
for
u
being
ExtReal
for
x
being
Real
holds
(
x
in
].
-infty
,
u
.]
iff
x
<=
u
)
proof
end;
theorem
:: XXREAL_1:235
for
u
being
ExtReal
for
x
being
Real
holds
(
x
in
].
u
,
+infty
.[
iff
u
<
x
)
proof
end;
theorem
:: XXREAL_1:236
for
u
being
ExtReal
for
x
being
Real
holds
(
x
in
[.
u
,
+infty
.[
iff
u
<=
x
)
proof
end;
theorem
:: XXREAL_1:237
for
p
,
r
,
s
being
ExtReal
st
p
<=
r
holds
[.
r
,
s
.]
c=
[.
p
,
+infty
.]
proof
end;
theorem
:: XXREAL_1:238
for
p
,
r
,
s
being
ExtReal
st
p
<=
r
holds
[.
r
,
s
.[
c=
[.
p
,
+infty
.]
proof
end;
theorem
:: XXREAL_1:239
for
p
,
r
,
s
being
ExtReal
st
p
<=
r
holds
].
r
,
s
.]
c=
[.
p
,
+infty
.]
proof
end;
theorem
:: XXREAL_1:240
for
p
,
r
,
s
being
ExtReal
st
p
<=
r
holds
].
r
,
s
.[
c=
[.
p
,
+infty
.]
proof
end;
theorem
:: XXREAL_1:241
for
p
,
r
,
s
being
ExtReal
st
p
<=
r
holds
[.
r
,
s
.[
c=
[.
p
,
+infty
.[
proof
end;
theorem
:: XXREAL_1:242
for
p
,
r
,
s
being
ExtReal
st
p
<
r
holds
[.
r
,
s
.]
c=
].
p
,
+infty
.]
by
Th39
,
XXREAL_0:3
;
theorem
:: XXREAL_1:243
for
p
,
r
,
s
being
ExtReal
st
p
<
r
holds
[.
r
,
s
.[
c=
].
p
,
+infty
.]
by
Th40
,
XXREAL_0:3
;
theorem
:: XXREAL_1:244
for
p
,
r
,
s
being
ExtReal
st
p
<=
r
holds
].
r
,
s
.[
c=
].
p
,
+infty
.]
proof
end;
theorem
:: XXREAL_1:245
for
p
,
r
,
s
being
ExtReal
st
p
<=
r
holds
].
r
,
s
.]
c=
].
p
,
+infty
.]
proof
end;
theorem
:: XXREAL_1:246
for
p
,
r
,
s
being
ExtReal
st
p
<=
r
holds
].
r
,
s
.[
c=
[.
p
,
+infty
.[
proof
end;
theorem
:: XXREAL_1:247
for
p
,
r
,
s
being
ExtReal
st
p
<=
r
holds
].
r
,
s
.[
c=
].
p
,
+infty
.[
proof
end;
theorem
:: XXREAL_1:248
for
p
,
r
,
s
being
ExtReal
st
p
<
r
holds
[.
r
,
s
.[
c=
].
p
,
+infty
.[
by
Th48
,
XXREAL_0:3
;
theorem
:: XXREAL_1:249
for
p
,
r
being
ExtReal
for
s
being
Real
st
p
<
r
holds
[.
r
,
s
.]
c=
].
p
,
+infty
.[
proof
end;
theorem
:: XXREAL_1:250
for
p
,
r
being
ExtReal
for
s
being
Real
st
p
<=
r
holds
].
r
,
s
.]
c=
].
p
,
+infty
.[
proof
end;
theorem
:: XXREAL_1:251
for
p
,
r
being
ExtReal
for
s
being
Real
st
p
<=
r
holds
[.
r
,
s
.]
c=
[.
p
,
+infty
.[
proof
end;
theorem
:: XXREAL_1:252
for
p
,
r
being
ExtReal
for
s
being
Real
st
p
<=
r
holds
].
r
,
s
.]
c=
[.
p
,
+infty
.[
proof
end;
theorem
:: XXREAL_1:253
for
q
,
r
,
s
being
ExtReal
st
s
<=
q
holds
[.
r
,
s
.]
c=
[.
-infty
,
q
.]
proof
end;
theorem
:: XXREAL_1:254
for
q
,
r
,
s
being
ExtReal
st
s
<=
q
holds
[.
r
,
s
.[
c=
[.
-infty
,
q
.]
proof
end;
theorem
:: XXREAL_1:255
for
q
,
r
,
s
being
ExtReal
st
s
<=
q
holds
].
r
,
s
.]
c=
[.
-infty
,
q
.]
proof
end;
theorem
:: XXREAL_1:256
for
q
,
r
,
s
being
ExtReal
st
s
<=
q
holds
].
r
,
s
.[
c=
[.
-infty
,
q
.]
proof
end;
theorem
:: XXREAL_1:257
for
q
,
r
,
s
being
ExtReal
st
s
<=
q
holds
[.
r
,
s
.[
c=
[.
-infty
,
q
.[
proof
end;
theorem
:: XXREAL_1:258
for
q
,
r
,
s
being
ExtReal
st
s
<=
q
holds
].
r
,
s
.[
c=
].
-infty
,
q
.]
proof
end;
theorem
:: XXREAL_1:259
for
q
,
r
,
s
being
ExtReal
st
s
<=
q
holds
].
r
,
s
.]
c=
].
-infty
,
q
.]
proof
end;
theorem
:: XXREAL_1:260
for
q
,
r
,
s
being
ExtReal
st
s
<
q
holds
[.
r
,
s
.]
c=
[.
-infty
,
q
.[
by
Th43
,
XXREAL_0:5
;
theorem
:: XXREAL_1:261
for
q
,
r
,
s
being
ExtReal
st
s
<
q
holds
].
r
,
s
.]
c=
[.
-infty
,
q
.[
by
Th44
,
XXREAL_0:5
;
theorem
:: XXREAL_1:262
for
q
,
r
,
s
being
ExtReal
st
s
<=
q
holds
].
r
,
s
.[
c=
[.
-infty
,
q
.[
proof
end;
theorem
:: XXREAL_1:263
for
q
,
r
,
s
being
ExtReal
st
s
<=
q
holds
].
r
,
s
.[
c=
].
-infty
,
q
.[
proof
end;
theorem
:: XXREAL_1:264
for
q
,
r
,
s
being
ExtReal
st
s
<
q
holds
].
r
,
s
.]
c=
].
-infty
,
q
.[
by
Th49
,
XXREAL_0:5
;
theorem
:: XXREAL_1:265
for
q
,
s
being
ExtReal
for
r
being
Real
st
s
<=
q
holds
[.
r
,
s
.]
c=
].
-infty
,
q
.]
proof
end;
theorem
:: XXREAL_1:266
for
q
,
s
being
ExtReal
for
r
being
Real
st
s
<=
q
holds
[.
r
,
s
.[
c=
].
-infty
,
q
.]
proof
end;
theorem
:: XXREAL_1:267
for
q
,
s
being
ExtReal
for
r
being
Real
st
s
<
q
holds
[.
r
,
s
.]
c=
].
-infty
,
q
.[
proof
end;
theorem
:: XXREAL_1:268
for
q
,
s
being
ExtReal
for
r
being
Real
st
s
<=
q
holds
[.
r
,
s
.[
c=
].
-infty
,
q
.[
proof
end;
theorem
:: XXREAL_1:269
for
a
,
b
being
ExtReal
holds
].
-infty
,
b
.[
/\
].
a
,
+infty
.[
=
].
a
,
b
.[
proof
end;
theorem
:: XXREAL_1:270
for
p
being
ExtReal
for
b
being
Real
holds
].
-infty
,
b
.]
/\
].
p
,
+infty
.[
=
].
p
,
b
.]
proof
end;
theorem
:: XXREAL_1:271
for
p
being
ExtReal
for
a
being
Real
holds
].
-infty
,
p
.[
/\
[.
a
,
+infty
.[
=
[.
a
,
p
.[
proof
end;
theorem
:: XXREAL_1:272
for
a
,
b
being
Real
holds
].
-infty
,
a
.]
/\
[.
b
,
+infty
.[
=
[.
b
,
a
.]
proof
end;
theorem
:: XXREAL_1:273
for
p
,
q
,
r
,
s
being
ExtReal
st
s
<=
p
holds
[.
r
,
s
.[
misses
].
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:274
for
p
,
q
,
r
,
s
being
ExtReal
st
s
<=
p
holds
[.
r
,
s
.[
misses
].
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:275
for
p
,
q
,
r
,
s
being
ExtReal
st
s
<=
p
holds
].
r
,
s
.[
misses
].
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:276
for
p
,
q
,
r
,
s
being
ExtReal
st
s
<=
p
holds
].
r
,
s
.[
misses
].
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:277
for
p
,
q
,
r
,
s
being
ExtReal
st
s
<
p
holds
[.
r
,
s
.]
misses
[.
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:278
for
p
,
q
,
r
,
s
being
ExtReal
st
s
<
p
holds
[.
r
,
s
.]
misses
[.
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:279
for
p
,
q
,
r
,
s
being
ExtReal
st
s
<
p
holds
].
r
,
s
.]
misses
[.
p
,
q
.[
proof
end;
theorem
:: XXREAL_1:280
for
p
,
q
,
r
,
s
being
ExtReal
st
s
<
p
holds
].
r
,
s
.]
misses
[.
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:281
for
s
,
t
being
ExtReal
holds
[.
-infty
,
t
.]
\
[.
-infty
,
s
.]
=
].
s
,
t
.]
by
Th182
,
XXREAL_0:5
;
theorem
:: XXREAL_1:282
for
s
,
t
being
ExtReal
holds
[.
-infty
,
t
.[
\
[.
-infty
,
s
.]
=
].
s
,
t
.[
by
Th183
,
XXREAL_0:5
;
theorem
:: XXREAL_1:283
for
s
,
t
being
ExtReal
holds
[.
-infty
,
t
.]
\
[.
-infty
,
s
.]
=
].
s
,
t
.]
by
Th186
,
XXREAL_0:5
;
theorem
:: XXREAL_1:284
for
r
,
s
being
ExtReal
holds
[.
r
,
+infty
.]
\
[.
s
,
+infty
.]
=
[.
r
,
s
.[
by
Th190
,
XXREAL_0:3
;
theorem
:: XXREAL_1:285
for
r
,
s
being
ExtReal
holds
].
r
,
+infty
.]
\
[.
s
,
+infty
.]
=
].
r
,
s
.[
by
Th191
,
XXREAL_0:3
;
theorem
:: XXREAL_1:286
for
t
being
ExtReal
for
s
being
Real
holds
[.
-infty
,
t
.]
\
[.
-infty
,
s
.[
=
[.
s
,
t
.]
proof
end;
theorem
:: XXREAL_1:287
for
t
being
ExtReal
for
s
being
Real
holds
[.
-infty
,
t
.[
\
[.
-infty
,
s
.[
=
[.
s
,
t
.[
proof
end;
theorem
:: XXREAL_1:288
for
t
being
ExtReal
for
s
being
Real
holds
].
-infty
,
t
.[
\
].
-infty
,
s
.]
=
].
s
,
t
.[
proof
end;
theorem
:: XXREAL_1:289
for
t
being
ExtReal
for
s
being
Real
holds
].
-infty
,
t
.]
\
].
-infty
,
s
.[
=
[.
s
,
t
.]
proof
end;
theorem
:: XXREAL_1:290
for
t
being
ExtReal
for
s
being
Real
holds
].
-infty
,
t
.[
\
].
-infty
,
s
.[
=
[.
s
,
t
.[
proof
end;
theorem
:: XXREAL_1:291
for
r
being
ExtReal
for
s
being
Real
holds
[.
r
,
+infty
.]
\
].
s
,
+infty
.]
=
[.
r
,
s
.]
proof
end;
theorem
:: XXREAL_1:292
for
r
being
ExtReal
for
s
being
Real
holds
].
r
,
+infty
.]
\
].
s
,
+infty
.]
=
].
r
,
s
.]
proof
end;
theorem
:: XXREAL_1:293
for
r
being
ExtReal
for
s
being
Real
holds
[.
r
,
+infty
.[
\
[.
s
,
+infty
.[
=
[.
r
,
s
.[
proof
end;
theorem
:: XXREAL_1:294
for
r
being
ExtReal
for
s
being
Real
holds
].
r
,
+infty
.[
\
[.
s
,
+infty
.[
=
].
r
,
s
.[
proof
end;
theorem
:: XXREAL_1:295
for
r
being
ExtReal
for
s
being
Real
holds
[.
r
,
+infty
.[
\
].
s
,
+infty
.[
=
[.
r
,
s
.]
proof
end;
theorem
:: XXREAL_1:296
for
r
being
ExtReal
for
s
being
Real
holds
].
r
,
+infty
.[
\
].
s
,
+infty
.[
=
].
r
,
s
.]
proof
end;
theorem
Th297
:
:: XXREAL_1:297
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
&
p
<
q
holds
].
r
,
q
.[
\
].
p
,
s
.[
=
].
r
,
p
.]
\/
[.
s
,
q
.[
proof
end;
theorem
Th298
:
:: XXREAL_1:298
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
s
&
p
<
q
holds
[.
r
,
q
.[
\
].
p
,
s
.[
=
[.
r
,
p
.]
\/
[.
s
,
q
.[
proof
end;
theorem
Th299
:
:: XXREAL_1:299
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
&
p
<=
q
holds
].
r
,
q
.]
\
].
p
,
s
.[
=
].
r
,
p
.]
\/
[.
s
,
q
.]
proof
end;
theorem
Th300
:
:: XXREAL_1:300
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
s
&
p
<=
q
holds
[.
r
,
q
.]
\
].
p
,
s
.[
=
[.
r
,
p
.]
\/
[.
s
,
q
.]
proof
end;
theorem
Th301
:
:: XXREAL_1:301
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
&
p
<=
q
holds
].
r
,
q
.[
\
[.
p
,
s
.[
=
].
r
,
p
.[
\/
[.
s
,
q
.[
proof
end;
theorem
Th302
:
:: XXREAL_1:302
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
s
&
p
<=
q
holds
[.
r
,
q
.[
\
[.
p
,
s
.[
=
[.
r
,
p
.[
\/
[.
s
,
q
.[
proof
end;
theorem
Th303
:
:: XXREAL_1:303
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
&
p
<=
q
holds
].
r
,
q
.]
\
[.
p
,
s
.[
=
].
r
,
p
.[
\/
[.
s
,
q
.]
proof
end;
theorem
Th304
:
:: XXREAL_1:304
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
s
&
p
<=
q
holds
[.
r
,
q
.]
\
[.
p
,
s
.[
=
[.
r
,
p
.[
\/
[.
s
,
q
.]
proof
end;
theorem
Th305
:
:: XXREAL_1:305
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
&
p
<
q
holds
].
r
,
q
.[
\
].
p
,
s
.]
=
].
r
,
p
.]
\/
].
s
,
q
.[
proof
end;
theorem
Th306
:
:: XXREAL_1:306
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
s
&
p
<
q
holds
[.
r
,
q
.[
\
].
p
,
s
.]
=
[.
r
,
p
.]
\/
].
s
,
q
.[
proof
end;
theorem
Th307
:
:: XXREAL_1:307
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
&
p
<=
q
holds
].
r
,
q
.]
\
].
p
,
s
.]
=
].
r
,
p
.]
\/
].
s
,
q
.]
proof
end;
theorem
Th308
:
:: XXREAL_1:308
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
s
&
p
<=
q
holds
[.
r
,
q
.]
\
].
p
,
s
.]
=
[.
r
,
p
.]
\/
].
s
,
q
.]
proof
end;
theorem
Th309
:
:: XXREAL_1:309
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
s
&
p
<=
q
holds
].
r
,
q
.[
\
[.
p
,
s
.]
=
].
r
,
p
.[
\/
].
s
,
q
.[
proof
end;
theorem
Th310
:
:: XXREAL_1:310
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
s
&
p
<=
q
holds
[.
r
,
q
.[
\
[.
p
,
s
.]
=
[.
r
,
p
.[
\/
].
s
,
q
.[
proof
end;
theorem
Th311
:
:: XXREAL_1:311
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<
s
&
p
<=
q
holds
].
r
,
q
.]
\
[.
p
,
s
.]
=
].
r
,
p
.[
\/
].
s
,
q
.]
proof
end;
theorem
Th312
:
:: XXREAL_1:312
for
p
,
q
,
r
,
s
being
ExtReal
st
r
<=
s
&
p
<=
q
holds
[.
r
,
q
.]
\
[.
p
,
s
.]
=
[.
r
,
p
.[
\/
].
s
,
q
.]
proof
end;
theorem
Th313
:
:: XXREAL_1:313
for
p
,
q
,
r
being
ExtReal
st
r
<=
p
&
p
<=
q
holds
].
r
,
q
.[
\
{
p
}
=
].
r
,
p
.[
\/
].
p
,
q
.[
proof
end;
theorem
Th314
:
:: XXREAL_1:314
for
p
,
q
,
r
being
ExtReal
st
r
<=
p
&
p
<=
q
holds
[.
r
,
q
.[
\
{
p
}
=
[.
r
,
p
.[
\/
].
p
,
q
.[
proof
end;
theorem
Th315
:
:: XXREAL_1:315
for
p
,
q
,
r
being
ExtReal
st
r
<
p
&
p
<=
q
holds
].
r
,
q
.]
\
{
p
}
=
].
r
,
p
.[
\/
].
p
,
q
.]
proof
end;
theorem
Th316
:
:: XXREAL_1:316
for
p
,
q
,
r
being
ExtReal
st
r
<=
p
&
p
<=
q
holds
[.
r
,
q
.]
\
{
p
}
=
[.
r
,
p
.[
\/
].
p
,
q
.]
proof
end;
theorem
Th317
:
:: XXREAL_1:317
for
p
,
q
,
r
being
ExtReal
st
r
<
q
&
p
<=
q
holds
].
r
,
q
.]
\
].
p
,
q
.[
=
].
r
,
p
.]
\/
{
q
}
proof
end;
theorem
Th318
:
:: XXREAL_1:318
for
p
,
q
,
r
being
ExtReal
st
r
<=
q
&
p
<=
q
holds
[.
r
,
q
.]
\
].
p
,
q
.[
=
[.
r
,
p
.]
\/
{
q
}
proof
end;
theorem
Th319
:
:: XXREAL_1:319
for
p
,
q
,
r
being
ExtReal
st
r
<
q
&
p
<=
q
holds
].
r
,
q
.]
\
[.
p
,
q
.[
=
].
r
,
p
.[
\/
{
q
}
proof
end;
theorem
Th320
:
:: XXREAL_1:320
for
p
,
q
,
r
being
ExtReal
st
r
<=
q
&
p
<=
q
holds
[.
r
,
q
.]
\
[.
p
,
q
.[
=
[.
r
,
p
.[
\/
{
q
}
proof
end;
theorem
Th321
:
:: XXREAL_1:321
for
p
,
q
,
s
being
ExtReal
st
p
<=
s
&
p
<
q
holds
[.
p
,
q
.[
\
].
p
,
s
.[
=
{
p
}
\/
[.
s
,
q
.[
proof
end;
theorem
Th322
:
:: XXREAL_1:322
for
p
,
q
,
s
being
ExtReal
st
p
<=
s
&
p
<=
q
holds
[.
p
,
q
.]
\
].
p
,
s
.[
=
{
p
}
\/
[.
s
,
q
.]
proof
end;
theorem
Th323
:
:: XXREAL_1:323
for
p
,
q
,
s
being
ExtReal
st
p
<=
s
&
p
<
q
holds
[.
p
,
q
.[
\
].
p
,
s
.]
=
{
p
}
\/
].
s
,
q
.[
proof
end;
theorem
Th324
:
:: XXREAL_1:324
for
p
,
q
,
s
being
ExtReal
st
p
<=
s
&
p
<=
q
holds
[.
p
,
q
.]
\
].
p
,
s
.]
=
{
p
}
\/
].
s
,
q
.]
proof
end;
theorem
Th325
:
:: XXREAL_1:325
for
p
,
q
,
s
being
ExtReal
st
p
<
q
holds
[.
-infty
,
q
.[
\
].
p
,
s
.[
=
[.
-infty
,
p
.]
\/
[.
s
,
q
.[
by
Th298
,
XXREAL_0:5
;
theorem
Th326
:
:: XXREAL_1:326
for
p
,
q
,
s
being
ExtReal
st
p
<=
q
holds
[.
-infty
,
q
.]
\
].
p
,
s
.[
=
[.
-infty
,
p
.]
\/
[.
s
,
q
.]
proof
end;
theorem
Th327
:
:: XXREAL_1:327
for
p
,
q
,
s
being
ExtReal
st
p
<=
q
holds
[.
-infty
,
q
.[
\
[.
p
,
s
.[
=
[.
-infty
,
p
.[
\/
[.
s
,
q
.[
proof
end;
theorem
Th328
:
:: XXREAL_1:328
for
p
,
q
,
s
being
ExtReal
st
p
<=
q
holds
[.
-infty
,
q
.]
\
[.
p
,
s
.[
=
[.
-infty
,
p
.[
\/
[.
s
,
q
.]
proof
end;
theorem
Th329
:
:: XXREAL_1:329
for
p
,
q
,
s
being
ExtReal
st
p
<
q
holds
[.
-infty
,
q
.[
\
].
p
,
s
.]
=
[.
-infty
,
p
.]
\/
].
s
,
q
.[
by
Th306
,
XXREAL_0:5
;
theorem
Th330
:
:: XXREAL_1:330
for
p
,
q
,
s
being
ExtReal
st
p
<=
q
holds
[.
-infty
,
q
.]
\
].
p
,
s
.]
=
[.
-infty
,
p
.]
\/
].
s
,
q
.]
proof
end;
theorem
Th331
:
:: XXREAL_1:331
for
p
,
q
,
s
being
ExtReal
st
p
<=
q
holds
[.
-infty
,
q
.[
\
[.
p
,
s
.]
=
[.
-infty
,
p
.[
\/
].
s
,
q
.[
proof
end;
theorem
Th332
:
:: XXREAL_1:332
for
p
,
q
,
s
being
ExtReal
st
p
<=
q
holds
[.
-infty
,
q
.]
\
[.
p
,
s
.]
=
[.
-infty
,
p
.[
\/
].
s
,
q
.]
proof
end;
theorem
Th333
:
:: XXREAL_1:333
for
p
,
q
being
ExtReal
for
s
being
Real
st
p
<
q
holds
].
-infty
,
q
.[
\
].
p
,
s
.[
=
].
-infty
,
p
.]
\/
[.
s
,
q
.[
proof
end;
theorem
Th334
:
:: XXREAL_1:334
for
p
,
q
being
ExtReal
for
s
being
Real
st
p
<=
q
holds
].
-infty
,
q
.]
\
].
p
,
s
.[
=
].
-infty
,
p
.]
\/
[.
s
,
q
.]
proof
end;
theorem
Th335
:
:: XXREAL_1:335
for
p
,
q
being
ExtReal
for
s
being
Real
st
p
<=
q
holds
].
-infty
,
q
.[
\
[.
p
,
s
.[
=
].
-infty
,
p
.[
\/
[.
s
,
q
.[
proof
end;
theorem
Th336
:
:: XXREAL_1:336
for
p
,
q
being
ExtReal
for
s
being
Real
st
p
<=
q
holds
].
-infty
,
q
.]
\
[.
p
,
s
.[
=
].
-infty
,
p
.[
\/
[.
s
,
q
.]
proof
end;
theorem
Th337
:
:: XXREAL_1:337
for
p
,
q
being
ExtReal
for
s
being
Real
st
p
<
q
holds
].
-infty
,
q
.[
\
].
p
,
s
.]
=
].
-infty
,
p
.]
\/
].
s
,
q
.[
proof
end;
theorem
Th338
:
:: XXREAL_1:338
for
p
,
q
being
ExtReal
for
s
being
Real
st
p
<=
q
holds
].
-infty
,
q
.]
\
].
p
,
s
.]
=
].
-infty
,
p
.]
\/
].
s
,
q
.]
proof
end;
theorem
Th339
:
:: XXREAL_1:339
for
p
,
q
,
s
being
ExtReal
st
p
<=
q
holds
].
-infty
,
q
.[
\
[.
p
,
s
.]
=
].
-infty
,
p
.[
\/
].
s
,
q
.[
proof
end;
theorem
Th340
:
:: XXREAL_1:340
for
p
,
q
being
ExtReal
for
s
being
Real
st
p
<=
q
holds
].
-infty
,
q
.]
\
[.
p
,
s
.]
=
].
-infty
,
p
.[
\/
].
s
,
q
.]
proof
end;
theorem
Th341
:
:: XXREAL_1:341
for
p
,
q
being
ExtReal
st
p
<=
q
holds
[.
-infty
,
q
.[
\
{
p
}
=
[.
-infty
,
p
.[
\/
].
p
,
q
.[
proof
end;
theorem
Th342
:
:: XXREAL_1:342
for
p
,
q
being
ExtReal
st
p
<=
q
holds
[.
-infty
,
q
.]
\
{
p
}
=
[.
-infty
,
p
.[
\/
].
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:343
for
p
,
q
being
ExtReal
st
p
<=
q
holds
[.
-infty
,
q
.]
\
].
p
,
q
.[
=
[.
-infty
,
p
.]
\/
{
q
}
proof
end;
theorem
:: XXREAL_1:344
for
p
,
q
being
ExtReal
st
p
<=
q
holds
[.
-infty
,
q
.]
\
[.
p
,
q
.[
=
[.
-infty
,
p
.[
\/
{
q
}
proof
end;
theorem
:: XXREAL_1:345
for
q
,
s
being
ExtReal
holds
[.
-infty
,
q
.]
\
].
-infty
,
s
.[
=
{
-infty
}
\/
[.
s
,
q
.]
proof
end;
theorem
:: XXREAL_1:346
for
q
,
s
being
ExtReal
holds
[.
-infty
,
q
.]
\
].
-infty
,
s
.]
=
{
-infty
}
\/
].
s
,
q
.]
proof
end;
theorem
:: XXREAL_1:347
for
s
being
ExtReal
for
q
being
Real
holds
[.
-infty
,
q
.[
\
].
-infty
,
s
.[
=
{
-infty
}
\/
[.
s
,
q
.[
proof
end;
theorem
:: XXREAL_1:348
for
s
being
ExtReal
for
q
being
Real
holds
[.
-infty
,
q
.[
\
].
-infty
,
s
.]
=
{
-infty
}
\/
].
s
,
q
.[
proof
end;
theorem
Th349
:
:: XXREAL_1:349
for
p
,
q
being
ExtReal
st
p
<=
q
holds
].
-infty
,
q
.[
\
{
p
}
=
].
-infty
,
p
.[
\/
].
p
,
q
.[
proof
end;
theorem
Th350
:
:: XXREAL_1:350
for
q
being
ExtReal
for
p
being
Real
st
p
<=
q
holds
].
-infty
,
q
.]
\
{
p
}
=
].
-infty
,
p
.[
\/
].
p
,
q
.]
proof
end;
theorem
:: XXREAL_1:351
for
p
being
ExtReal
for
q
being
Real
st
p
<=
q
holds
].
-infty
,
q
.]
\
].
p
,
q
.[
=
].
-infty
,
p
.]
\/
{
q
}
proof
end;
theorem
:: XXREAL_1:352
for
p
being
ExtReal
for
q
being
Real
st
p
<=
q
holds
].
-infty
,
q
.]
\
[.
p
,
q
.[
=
].
-infty
,
p
.[
\/
{
q
}
proof
end;
theorem
:: XXREAL_1:353
for
p
,
r
,
s
being
ExtReal
st
r
<
s
holds
].
r
,
+infty
.]
\
].
p
,
s
.[
=
].
r
,
p
.]
\/
[.
s
,
+infty
.]
by
Th299
,
XXREAL_0:3
;
theorem
:: XXREAL_1:354
for
p
,
r
,
s
being
ExtReal
st
r
<=
s
holds
[.
r
,
+infty
.]
\
].
p
,
s
.[
=
[.
r
,
p
.]
\/
[.
s
,
+infty
.]
proof
end;
theorem
:: XXREAL_1:355
for
p
,
r
,
s
being
ExtReal
st
r
<
s
holds
].
r
,
+infty
.[
\
[.
p
,
s
.[
=
].
r
,
p
.[
\/
[.
s
,
+infty
.[
by
Th301
,
XXREAL_0:3
;
theorem
:: XXREAL_1:356
for
p
,
r
,
s
being
ExtReal
st
r
<=
s
holds
[.
r
,
+infty
.[
\
[.
p
,
s
.[
=
[.
r
,
p
.[
\/
[.
s
,
+infty
.[
proof
end;
theorem
:: XXREAL_1:357
for
p
,
r
,
s
being
ExtReal
st
r
<
s
holds
].
r
,
+infty
.]
\
[.
p
,
s
.[
=
].
r
,
p
.[
\/
[.
s
,
+infty
.]
by
Th303
,
XXREAL_0:3
;
theorem
:: XXREAL_1:358
for
p
,
r
,
s
being
ExtReal
st
r
<=
s
holds
[.
r
,
+infty
.]
\
[.
p
,
s
.[
=
[.
r
,
p
.[
\/
[.
s
,
+infty
.]
proof
end;
theorem
:: XXREAL_1:359
for
p
,
r
,
s
being
ExtReal
st
r
<
s
holds
].
r
,
+infty
.]
\
].
p
,
s
.]
=
].
r
,
p
.]
\/
].
s
,
+infty
.]
by
Th307
,
XXREAL_0:3
;
theorem
:: XXREAL_1:360
for
p
,
r
,
s
being
ExtReal
st
r
<=
s
holds
[.
r
,
+infty
.]
\
].
p
,
s
.]
=
[.
r
,
p
.]
\/
].
s
,
+infty
.]
proof
end;
theorem
:: XXREAL_1:361
for
p
,
r
,
s
being
ExtReal
st
r
<=
s
holds
].
r
,
+infty
.[
\
[.
p
,
s
.]
=
].
r
,
p
.[
\/
].
s
,
+infty
.[
proof
end;
theorem
:: XXREAL_1:362
for
p
,
r
,
s
being
ExtReal
st
r
<=
s
holds
[.
r
,
+infty
.[
\
[.
p
,
s
.]
=
[.
r
,
p
.[
\/
].
s
,
+infty
.[
proof
end;
theorem
:: XXREAL_1:363
for
p
,
r
,
s
being
ExtReal
st
r
<
s
holds
].
r
,
+infty
.]
\
[.
p
,
s
.]
=
].
r
,
p
.[
\/
].
s
,
+infty
.]
by
Th311
,
XXREAL_0:3
;
theorem
:: XXREAL_1:364
for
p
,
r
,
s
being
ExtReal
st
r
<=
s
holds
[.
r
,
+infty
.]
\
[.
p
,
s
.]
=
[.
r
,
p
.[
\/
].
s
,
+infty
.]
proof
end;
theorem
:: XXREAL_1:365
for
p
,
r
being
ExtReal
st
r
<=
p
holds
].
r
,
+infty
.[
\
{
p
}
=
].
r
,
p
.[
\/
].
p
,
+infty
.[
proof
end;
theorem
:: XXREAL_1:366
for
p
,
r
being
ExtReal
st
r
<=
p
holds
[.
r
,
+infty
.[
\
{
p
}
=
[.
r
,
p
.[
\/
].
p
,
+infty
.[
proof
end;
theorem
:: XXREAL_1:367
for
p
,
r
being
ExtReal
st
r
<
p
holds
].
r
,
+infty
.]
\
{
p
}
=
].
r
,
p
.[
\/
].
p
,
+infty
.]
by
Th315
,
XXREAL_0:3
;
theorem
:: XXREAL_1:368
for
p
,
r
being
ExtReal
st
r
<=
p
holds
[.
r
,
+infty
.]
\
{
p
}
=
[.
r
,
p
.[
\/
].
p
,
+infty
.]
proof
end;
theorem
:: XXREAL_1:369
for
p
,
r
being
ExtReal
holds
[.
r
,
+infty
.]
\
].
p
,
+infty
.[
=
[.
r
,
p
.]
\/
{
+infty
}
proof
end;
theorem
:: XXREAL_1:370
for
p
,
r
being
ExtReal
holds
[.
r
,
+infty
.]
\
[.
p
,
+infty
.[
=
[.
r
,
p
.[
\/
{
+infty
}
proof
end;
theorem
:: XXREAL_1:371
for
p
being
ExtReal
for
r
being
Real
holds
].
r
,
+infty
.]
\
].
p
,
+infty
.[
=
].
r
,
p
.]
\/
{
+infty
}
proof
end;
theorem
:: XXREAL_1:372
for
p
being
ExtReal
for
r
being
Real
holds
].
r
,
+infty
.]
\
[.
p
,
+infty
.[
=
].
r
,
p
.[
\/
{
+infty
}
proof
end;
theorem
:: XXREAL_1:373
for
p
,
s
being
ExtReal
st
p
<=
s
holds
[.
p
,
+infty
.]
\
].
p
,
s
.[
=
{
p
}
\/
[.
s
,
+infty
.]
proof
end;
theorem
:: XXREAL_1:374
for
p
,
s
being
ExtReal
st
p
<=
s
holds
[.
p
,
+infty
.]
\
].
p
,
s
.]
=
{
p
}
\/
].
s
,
+infty
.]
proof
end;
theorem
:: XXREAL_1:375
for
p
,
s
being
ExtReal
holds
[.
-infty
,
+infty
.]
\
].
p
,
s
.[
=
[.
-infty
,
p
.]
\/
[.
s
,
+infty
.]
by
Th326
,
XXREAL_0:3
;
theorem
:: XXREAL_1:376
for
p
,
s
being
ExtReal
holds
[.
-infty
,
+infty
.[
\
[.
p
,
s
.[
=
[.
-infty
,
p
.[
\/
[.
s
,
+infty
.[
by
Th327
,
XXREAL_0:3
;
theorem
:: XXREAL_1:377
for
p
,
s
being
ExtReal
holds
[.
-infty
,
+infty
.]
\
[.
p
,
s
.[
=
[.
-infty
,
p
.[
\/
[.
s
,
+infty
.]
by
Th328
,
XXREAL_0:3
;
theorem
:: XXREAL_1:378
for
p
,
s
being
ExtReal
holds
[.
-infty
,
+infty
.]
\
].
p
,
s
.]
=
[.
-infty
,
p
.]
\/
].
s
,
+infty
.]
by
Th330
,
XXREAL_0:3
;
theorem
:: XXREAL_1:379
for
p
,
s
being
ExtReal
holds
[.
-infty
,
+infty
.[
\
[.
p
,
s
.]
=
[.
-infty
,
p
.[
\/
].
s
,
+infty
.[
by
Th331
,
XXREAL_0:3
;
theorem
:: XXREAL_1:380
for
p
,
s
being
ExtReal
holds
[.
-infty
,
+infty
.]
\
[.
p
,
s
.]
=
[.
-infty
,
p
.[
\/
].
s
,
+infty
.]
by
Th332
,
XXREAL_0:3
;
theorem
:: XXREAL_1:381
for
p
being
ExtReal
for
s
being
Real
holds
].
-infty
,
+infty
.]
\
].
p
,
s
.[
=
].
-infty
,
p
.]
\/
[.
s
,
+infty
.]
by
Th334
,
XXREAL_0:3
;
theorem
:: XXREAL_1:382
for
p
being
ExtReal
for
s
being
Real
holds
REAL
\
[.
p
,
s
.[
=
].
-infty
,
p
.[
\/
[.
s
,
+infty
.[
by
Th224
,
Th335
,
XXREAL_0:3
;
theorem
:: XXREAL_1:383
for
p
being
ExtReal
for
s
being
Real
holds
].
-infty
,
+infty
.]
\
[.
p
,
s
.[
=
].
-infty
,
p
.[
\/
[.
s
,
+infty
.]
by
Th336
,
XXREAL_0:3
;
theorem
:: XXREAL_1:384
for
p
being
ExtReal
for
s
being
Real
holds
].
-infty
,
+infty
.]
\
].
p
,
s
.]
=
].
-infty
,
p
.]
\/
].
s
,
+infty
.]
by
Th338
,
XXREAL_0:3
;
theorem
:: XXREAL_1:385
for
p
,
s
being
ExtReal
holds
REAL
\
[.
p
,
s
.]
=
].
-infty
,
p
.[
\/
].
s
,
+infty
.[
by
Th224
,
Th339
,
XXREAL_0:3
;
theorem
:: XXREAL_1:386
for
p
being
ExtReal
for
s
being
Real
holds
].
-infty
,
+infty
.]
\
[.
p
,
s
.]
=
].
-infty
,
p
.[
\/
].
s
,
+infty
.]
by
Th340
,
XXREAL_0:3
;
theorem
:: XXREAL_1:387
for
p
being
ExtReal
holds
[.
-infty
,
+infty
.[
\
{
p
}
=
[.
-infty
,
p
.[
\/
].
p
,
+infty
.[
by
Th341
,
XXREAL_0:3
;
theorem
:: XXREAL_1:388
for
p
being
ExtReal
holds
[.
-infty
,
+infty
.]
\
{
p
}
=
[.
-infty
,
p
.[
\/
].
p
,
+infty
.]
by
Th342
,
XXREAL_0:3
;
theorem
:: XXREAL_1:389
for
p
being
ExtReal
holds
REAL
\
{
p
}
=
].
-infty
,
p
.[
\/
].
p
,
+infty
.[
by
Th224
,
Th349
,
XXREAL_0:3
;
theorem
:: XXREAL_1:390
for
p
being
Real
holds
].
-infty
,
+infty
.]
\
{
p
}
=
].
-infty
,
p
.[
\/
].
p
,
+infty
.]
by
Th350
,
XXREAL_0:3
;
theorem
:: XXREAL_1:391
for
r
,
s
being
ExtReal
for
p
being
Real
st
r
<
s
holds
].
r
,
+infty
.[
\
].
p
,
s
.[
=
].
r
,
p
.]
\/
[.
s
,
+infty
.[
proof
end;
theorem
:: XXREAL_1:392
for
r
,
s
being
ExtReal
for
p
being
Real
st
r
<=
s
holds
[.
r
,
+infty
.[
\
].
p
,
s
.[
=
[.
r
,
p
.]
\/
[.
s
,
+infty
.[
proof
end;
theorem
:: XXREAL_1:393
for
r
,
s
being
ExtReal
for
p
being
Real
st
r
<
s
holds
].
r
,
+infty
.[
\
].
p
,
s
.]
=
].
r
,
p
.]
\/
].
s
,
+infty
.[
proof
end;
theorem
:: XXREAL_1:394
for
r
,
s
being
ExtReal
for
p
being
Real
st
r
<=
s
holds
[.
r
,
+infty
.[
\
].
p
,
s
.]
=
[.
r
,
p
.]
\/
].
s
,
+infty
.[
proof
end;
theorem
:: XXREAL_1:395
for
s
being
ExtReal
for
p
being
Real
st
p
<=
s
holds
[.
p
,
+infty
.[
\
].
p
,
s
.]
=
{
p
}
\/
].
s
,
+infty
.[
proof
end;
theorem
:: XXREAL_1:396
for
s
being
ExtReal
for
p
being
Real
holds
[.
-infty
,
+infty
.[
\
].
p
,
s
.[
=
[.
-infty
,
p
.]
\/
[.
s
,
+infty
.[
proof
end;
theorem
:: XXREAL_1:397
for
s
being
ExtReal
for
p
being
Real
holds
[.
-infty
,
+infty
.[
\
].
p
,
s
.]
=
[.
-infty
,
p
.]
\/
].
s
,
+infty
.[
proof
end;
theorem
:: XXREAL_1:398
for
s
,
p
being
Real
holds
REAL
\
].
p
,
s
.[
=
].
-infty
,
p
.]
\/
[.
s
,
+infty
.[
proof
end;
theorem
:: XXREAL_1:399
for
s
,
p
being
Real
holds
REAL
\
].
p
,
s
.]
=
].
-infty
,
p
.]
\/
].
s
,
+infty
.[
proof
end;
theorem
:: XXREAL_1:400
for
s
being
ExtReal
for
p
being
Real
st
p
<=
s
holds
[.
p
,
+infty
.[
\
].
p
,
s
.[
=
{
p
}
\/
[.
s
,
+infty
.[
proof
end;
theorem
Th401
:
:: XXREAL_1:401
for
r
,
s
being
ExtReal
st
r
<
s
holds
[.
r
,
s
.]
\
[.
r
,
s
.[
=
{
s
}
proof
end;
theorem
Th402
:
:: XXREAL_1:402
for
r
,
s
being
ExtReal
st
r
<
s
holds
].
r
,
s
.]
\
].
r
,
s
.[
=
{
s
}
proof
end;
theorem
Th403
:
:: XXREAL_1:403
for
r
,
t
being
ExtReal
st
r
<
t
holds
[.
r
,
t
.]
\
].
r
,
t
.]
=
{
r
}
proof
end;
theorem
Th404
:
:: XXREAL_1:404
for
r
,
t
being
ExtReal
st
r
<
t
holds
[.
r
,
t
.[
\
].
r
,
t
.[
=
{
r
}
proof
end;
theorem
:: XXREAL_1:405
for
s
being
Real
holds
[.
-infty
,
s
.]
\
[.
-infty
,
s
.[
=
{
s
}
proof
end;
theorem
:: XXREAL_1:406
for
s
being
Real
holds
].
-infty
,
s
.]
\
].
-infty
,
s
.[
=
{
s
}
proof
end;
theorem
:: XXREAL_1:407
for
s
being
Real
holds
[.
-infty
,
s
.]
\
].
-infty
,
s
.]
=
{
-infty
}
proof
end;
theorem
:: XXREAL_1:408
for
s
being
Real
holds
[.
-infty
,
s
.[
\
].
-infty
,
s
.[
=
{
-infty
}
proof
end;
theorem
:: XXREAL_1:409
for
s
being
Real
holds
[.
s
,
+infty
.]
\
[.
s
,
+infty
.[
=
{
+infty
}
proof
end;
theorem
:: XXREAL_1:410
for
s
being
Real
holds
].
s
,
+infty
.]
\
].
s
,
+infty
.[
=
{
+infty
}
proof
end;
theorem
:: XXREAL_1:411
for
s
being
Real
holds
[.
s
,
+infty
.]
\
].
s
,
+infty
.]
=
{
s
}
proof
end;
theorem
:: XXREAL_1:412
for
s
being
Real
holds
[.
s
,
+infty
.[
\
].
s
,
+infty
.[
=
{
s
}
proof
end;
:: analogous to Th165
theorem
:: XXREAL_1:413
for
r
,
s
,
t
being
ExtReal
st
r
<=
s
&
s
<
t
holds
[.
r
,
s
.]
\/
[.
s
,
t
.[
=
[.
r
,
t
.[
proof
end;
theorem
:: XXREAL_1:414
for
r
,
s
,
t
being
ExtReal
st
r
<
s
&
s
<=
t
holds
].
r
,
s
.]
\/
[.
s
,
t
.]
=
].
r
,
t
.]
proof
end;
theorem
:: XXREAL_1:415
for
r
,
s
,
t
being
ExtReal
st
r
<
s
&
s
<
t
holds
].
r
,
s
.]
\/
[.
s
,
t
.[
=
].
r
,
t
.[
proof
end;
:: analogous to Th138
theorem
:: XXREAL_1:416
for
r
,
s
,
t
being
ExtReal
st
r
<=
s
&
s
<
t
holds
[.
r
,
s
.]
/\
[.
s
,
t
.[
=
{
s
}
proof
end;
theorem
:: XXREAL_1:417
for
r
,
s
,
t
being
ExtReal
st
r
<
s
&
s
<=
t
holds
].
r
,
s
.]
/\
[.
s
,
t
.]
=
{
s
}
proof
end;
theorem
:: XXREAL_1:418
for
r
,
s
,
t
being
ExtReal
st
r
<=
s
&
s
<=
t
holds
[.
r
,
s
.]
/\
[.
s
,
t
.]
=
{
s
}
proof
end;
:: special cases of Th128-Th132
theorem
:: XXREAL_1:419
for
s
being
ExtReal
holds
[.
-infty
,
s
.]
=
].
-infty
,
s
.[
\/
{
-infty
,
s
}
by
Th128
,
XXREAL_0:5
;
theorem
:: XXREAL_1:420
for
s
being
ExtReal
holds
[.
-infty
,
s
.]
=
[.
-infty
,
s
.[
\/
{
s
}
by
Th129
,
XXREAL_0:5
;
theorem
:: XXREAL_1:421
for
s
being
ExtReal
holds
[.
-infty
,
s
.]
=
{
-infty
}
\/
].
-infty
,
s
.]
by
Th130
,
XXREAL_0:5
;
theorem
:: XXREAL_1:422
for
s
being
Real
holds
[.
-infty
,
s
.[
=
{
-infty
}
\/
].
-infty
,
s
.[
proof
end;
theorem
:: XXREAL_1:423
for
s
being
Real
holds
].
-infty
,
s
.]
=
].
-infty
,
s
.[
\/
{
s
}
proof
end;
theorem
:: XXREAL_1:424
for
r
being
ExtReal
holds
[.
r
,
+infty
.]
=
].
r
,
+infty
.[
\/
{
r
,
+infty
}
by
Th128
,
XXREAL_0:3
;
theorem
:: XXREAL_1:425
for
r
being
ExtReal
holds
[.
r
,
+infty
.]
=
[.
r
,
+infty
.[
\/
{
+infty
}
by
Th129
,
XXREAL_0:3
;
theorem
:: XXREAL_1:426
for
r
being
ExtReal
holds
[.
r
,
+infty
.]
=
{
r
}
\/
].
r
,
+infty
.]
by
Th130
,
XXREAL_0:3
;
theorem
:: XXREAL_1:427
for
r
being
Real
holds
[.
r
,
+infty
.[
=
{
r
}
\/
].
r
,
+infty
.[
proof
end;
theorem
:: XXREAL_1:428
for
r
being
Real
holds
].
r
,
+infty
.]
=
].
r
,
+infty
.[
\/
{
+infty
}
proof
end;