scheme
Euklides{
F1(
Nat)
-> Nat,
F2()
-> Nat,
F3()
-> Nat } :
ex
n being
Nat st
(
F1(
n)
= F2()
gcd F3() &
F1(
(n + 1))
= 0 )
provided
A1:
(
0 < F3() &
F3()
< F2() )
and A2:
(
F1(
0)
= F2() &
F1(1)
= F3() )
and A3:
for
n being
Nat holds
F1(
(n + 2))
= F1(
n)
mod F1(
(n + 1))