begin
Lm1:
for rseq being Real_Sequence
for K being real number st ( for n being Element of NAT holds rseq . n <= K ) holds
upper_bound (rng rseq) <= K
Lm2:
for rseq being Real_Sequence st rseq is bounded holds
for n being Element of NAT holds rseq . n <= upper_bound (rng rseq)
:: deftheorem Def1 defines the_set_of_BoundedRealSequences RSSPACE4:def 1 :
for b1 being Subset of Linear_Space_of_RealSequences holds
( b1 = the_set_of_BoundedRealSequences iff for x being set holds
( x in b1 iff ( x in the_set_of_RealSequences & seq_id x is bounded ) ) );
Lm3:
RLSStruct(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)) #) is Subspace of Linear_Space_of_RealSequences
by RSSPACE:13;
registration
cluster RLSStruct(#
the_set_of_BoundedRealSequences,
(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),
(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),
(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)) #)
-> right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ;
coherence
( RLSStruct(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)) #) is Abelian & RLSStruct(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)) #) is add-associative & RLSStruct(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)) #) is right_zeroed & RLSStruct(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)) #) is right_complementable & RLSStruct(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)) #) is vector-distributive & RLSStruct(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)) #) is scalar-distributive & RLSStruct(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)) #) is scalar-associative & RLSStruct(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)) #) is scalar-unital )
by RSSPACE:13;
end;
Lm4:
( RLSStruct(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)) #) is Abelian & RLSStruct(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)) #) is add-associative & RLSStruct(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)) #) is right_zeroed & RLSStruct(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)) #) is right_complementable & RLSStruct(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)) #) is vector-distributive & RLSStruct(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)) #) is scalar-distributive & RLSStruct(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)) #) is scalar-associative & RLSStruct(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)) #) is scalar-unital )
;
Lm5:
ex NORM being Function of the_set_of_BoundedRealSequences,REAL st
for x being set st x in the_set_of_BoundedRealSequences holds
NORM . x = upper_bound (rng (abs (seq_id x)))
:: deftheorem Def2 defines linfty_norm RSSPACE4:def 2 :
for b1 being Function of the_set_of_BoundedRealSequences,REAL holds
( b1 = linfty_norm iff for x being set st x in the_set_of_BoundedRealSequences holds
b1 . x = upper_bound (rng (abs (seq_id x))) );
Lm6:
for rseq being Real_Sequence st ( for n being Nat holds rseq . n = 0 ) holds
( rseq is bounded & upper_bound (rng (abs rseq)) = 0 )
Lm7:
for rseq being Real_Sequence st rseq is bounded & upper_bound (rng (abs rseq)) = 0 holds
for n being Nat holds rseq . n = 0
theorem
canceled;
theorem
registration
cluster NORMSTR(#
the_set_of_BoundedRealSequences,
(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),
(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),
(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),
linfty_norm #)
-> right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ;
coherence
( NORMSTR(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),linfty_norm #) is Abelian & NORMSTR(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),linfty_norm #) is add-associative & NORMSTR(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),linfty_norm #) is right_zeroed & NORMSTR(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),linfty_norm #) is right_complementable & NORMSTR(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),linfty_norm #) is vector-distributive & NORMSTR(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),linfty_norm #) is scalar-distributive & NORMSTR(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),linfty_norm #) is scalar-associative & NORMSTR(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),linfty_norm #) is scalar-unital )
by Lm4, RSSPACE3:4;
end;
definition
func linfty_Space -> non
empty NORMSTR equals
NORMSTR(#
the_set_of_BoundedRealSequences,
(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),
(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),
(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),
linfty_norm #);
coherence
NORMSTR(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),linfty_norm #) is non empty NORMSTR
;
end;
:: deftheorem defines linfty_Space RSSPACE4:def 3 :
linfty_Space = NORMSTR(# the_set_of_BoundedRealSequences,(Zero_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Add_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),(Mult_ (the_set_of_BoundedRealSequences,Linear_Space_of_RealSequences)),linfty_norm #);
theorem Th3:
theorem Th4:
theorem
begin
:: deftheorem Def4 defines bounded RSSPACE4:def 4 :
for X being non empty set
for Y being RealNormSpace
for IT being Function of X, the carrier of Y holds
( IT is bounded iff ex K being Real st
( 0 <= K & ( for x being Element of X holds ||.(IT . x).|| <= K ) ) );
theorem Th6:
:: deftheorem Def5 defines BoundedFunctions RSSPACE4:def 5 :
for X being non empty set
for Y being RealNormSpace
for b3 being Subset of (RealVectSpace (X,Y)) holds
( b3 = BoundedFunctions (X,Y) iff for x being set holds
( x in b3 iff x is bounded Function of X, the carrier of Y ) );
theorem Th7:
theorem
for
X being non
empty set for
Y being
RealNormSpace holds
RLSStruct(#
(BoundedFunctions (X,Y)),
(Zero_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),
(Add_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),
(Mult_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))) #) is
Subspace of
RealVectSpace (
X,
Y)
by Th7, RSSPACE:13;
registration
let X be non
empty set ;
let Y be
RealNormSpace;
cluster RLSStruct(#
(BoundedFunctions (X,Y)),
(Zero_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),
(Add_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),
(Mult_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))) #)
-> right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital ;
coherence
( RLSStruct(# (BoundedFunctions (X,Y)),(Zero_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(Add_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(Mult_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))) #) is Abelian & RLSStruct(# (BoundedFunctions (X,Y)),(Zero_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(Add_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(Mult_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))) #) is add-associative & RLSStruct(# (BoundedFunctions (X,Y)),(Zero_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(Add_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(Mult_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))) #) is right_zeroed & RLSStruct(# (BoundedFunctions (X,Y)),(Zero_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(Add_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(Mult_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))) #) is right_complementable & RLSStruct(# (BoundedFunctions (X,Y)),(Zero_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(Add_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(Mult_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))) #) is vector-distributive & RLSStruct(# (BoundedFunctions (X,Y)),(Zero_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(Add_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(Mult_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))) #) is scalar-distributive & RLSStruct(# (BoundedFunctions (X,Y)),(Zero_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(Add_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(Mult_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))) #) is scalar-associative & RLSStruct(# (BoundedFunctions (X,Y)),(Zero_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(Add_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(Mult_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))) #) is scalar-unital )
by Th7, RSSPACE:13;
end;
definition
let X be non
empty set ;
let Y be
RealNormSpace;
func R_VectorSpace_of_BoundedFunctions (
X,
Y)
-> RealLinearSpace equals
RLSStruct(#
(BoundedFunctions (X,Y)),
(Zero_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),
(Add_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),
(Mult_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))) #);
coherence
RLSStruct(# (BoundedFunctions (X,Y)),(Zero_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(Add_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(Mult_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))) #) is RealLinearSpace
;
end;
:: deftheorem defines R_VectorSpace_of_BoundedFunctions RSSPACE4:def 6 :
for X being non empty set
for Y being RealNormSpace holds R_VectorSpace_of_BoundedFunctions (X,Y) = RLSStruct(# (BoundedFunctions (X,Y)),(Zero_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(Add_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(Mult_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))) #);
theorem
canceled;
theorem Th10:
theorem Th11:
theorem Th12:
:: deftheorem Def7 defines modetrans RSSPACE4:def 7 :
for X being non empty set
for Y being RealNormSpace
for f being set st f in BoundedFunctions (X,Y) holds
modetrans (f,X,Y) = f;
:: deftheorem defines PreNorms RSSPACE4:def 8 :
for X being non empty set
for Y being RealNormSpace
for u being Function of X, the carrier of Y holds PreNorms u = { ||.(u . t).|| where t is Element of X : verum } ;
theorem Th13:
theorem
theorem Th15:
definition
let X be non
empty set ;
let Y be
RealNormSpace;
func BoundedFunctionsNorm (
X,
Y)
-> Function of
(BoundedFunctions (X,Y)),
REAL means :
Def9:
for
x being
set st
x in BoundedFunctions (
X,
Y) holds
it . x = upper_bound (PreNorms (modetrans (x,X,Y)));
existence
ex b1 being Function of (BoundedFunctions (X,Y)),REAL st
for x being set st x in BoundedFunctions (X,Y) holds
b1 . x = upper_bound (PreNorms (modetrans (x,X,Y)))
by Th15;
uniqueness
for b1, b2 being Function of (BoundedFunctions (X,Y)),REAL st ( for x being set st x in BoundedFunctions (X,Y) holds
b1 . x = upper_bound (PreNorms (modetrans (x,X,Y))) ) & ( for x being set st x in BoundedFunctions (X,Y) holds
b2 . x = upper_bound (PreNorms (modetrans (x,X,Y))) ) holds
b1 = b2
end;
:: deftheorem Def9 defines BoundedFunctionsNorm RSSPACE4:def 9 :
for X being non empty set
for Y being RealNormSpace
for b3 being Function of (BoundedFunctions (X,Y)),REAL holds
( b3 = BoundedFunctionsNorm (X,Y) iff for x being set st x in BoundedFunctions (X,Y) holds
b3 . x = upper_bound (PreNorms (modetrans (x,X,Y))) );
theorem Th16:
theorem Th17:
definition
let X be non
empty set ;
let Y be
RealNormSpace;
func R_NormSpace_of_BoundedFunctions (
X,
Y)
-> non
empty NORMSTR equals
NORMSTR(#
(BoundedFunctions (X,Y)),
(Zero_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),
(Add_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),
(Mult_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),
(BoundedFunctionsNorm (X,Y)) #);
coherence
NORMSTR(# (BoundedFunctions (X,Y)),(Zero_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(Add_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(Mult_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(BoundedFunctionsNorm (X,Y)) #) is non empty NORMSTR
;
end;
:: deftheorem defines R_NormSpace_of_BoundedFunctions RSSPACE4:def 10 :
for X being non empty set
for Y being RealNormSpace holds R_NormSpace_of_BoundedFunctions (X,Y) = NORMSTR(# (BoundedFunctions (X,Y)),(Zero_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(Add_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(Mult_ ((BoundedFunctions (X,Y)),(RealVectSpace (X,Y)))),(BoundedFunctionsNorm (X,Y)) #);
theorem Th18:
theorem Th19:
theorem
theorem Th21:
theorem Th22:
theorem Th23:
theorem Th24:
theorem Th25:
theorem Th26:
registration
let X be non
empty set ;
let Y be
RealNormSpace;
cluster R_NormSpace_of_BoundedFunctions (
X,
Y)
-> non
empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like ;
coherence
( R_NormSpace_of_BoundedFunctions (X,Y) is reflexive & R_NormSpace_of_BoundedFunctions (X,Y) is discerning & R_NormSpace_of_BoundedFunctions (X,Y) is RealNormSpace-like & R_NormSpace_of_BoundedFunctions (X,Y) is vector-distributive & R_NormSpace_of_BoundedFunctions (X,Y) is scalar-distributive & R_NormSpace_of_BoundedFunctions (X,Y) is scalar-associative & R_NormSpace_of_BoundedFunctions (X,Y) is scalar-unital & R_NormSpace_of_BoundedFunctions (X,Y) is Abelian & R_NormSpace_of_BoundedFunctions (X,Y) is add-associative & R_NormSpace_of_BoundedFunctions (X,Y) is right_zeroed & R_NormSpace_of_BoundedFunctions (X,Y) is right_complementable )
by Th26;
end;
theorem Th27:
Lm8:
for e being Real
for seq being Real_Sequence st seq is convergent & ex k being Element of NAT st
for i being Element of NAT st k <= i holds
seq . i <= e holds
lim seq <= e
theorem Th28:
theorem Th29: