begin
theorem Th1:
theorem Th2:
for
X being
set holds
( 2
c= card X iff ex
x,
y being
set st
(
x in X &
y in X &
x <> y ) )
theorem Th3:
theorem Th4:
theorem Th5:
for
X being
set holds
( 3
c= card X iff ex
x,
y,
z being
set st
(
x in X &
y in X &
z in X &
x <> y &
x <> z &
y <> z ) )
theorem Th6:
begin
:: deftheorem Def1 defines are_collinear PENCIL_1:def 1 :
for S being TopStruct
for x, y being Point of S holds
( x,y are_collinear iff ( x = y or ex l being Block of S st {x,y} c= l ) );
:: deftheorem Def2 defines closed_under_lines PENCIL_1:def 2 :
for S being TopStruct
for T being Subset of S holds
( T is closed_under_lines iff for l being Block of S st 2 c= card (l /\ T) holds
l c= T );
:: deftheorem Def3 defines strong PENCIL_1:def 3 :
for S being TopStruct
for T being Subset of S holds
( T is strong iff for x, y being Point of S st x in T & y in T holds
x,y are_collinear );
:: deftheorem Def4 defines void PENCIL_1:def 4 :
for S being TopStruct holds
( S is void iff the topology of S is empty );
:: deftheorem Def5 defines degenerated PENCIL_1:def 5 :
for S being TopStruct holds
( S is degenerated iff the carrier of S is Block of S );
:: deftheorem Def6 defines with_non_trivial_blocks PENCIL_1:def 6 :
for S being TopStruct holds
( S is with_non_trivial_blocks iff for k being Block of S holds 2 c= card k );
:: deftheorem Def7 defines identifying_close_blocks PENCIL_1:def 7 :
for S being TopStruct holds
( S is identifying_close_blocks iff for k, l being Block of S st 2 c= card (k /\ l) holds
k = l );
:: deftheorem Def8 defines truly-partial PENCIL_1:def 8 :
for S being TopStruct holds
( S is truly-partial iff not for x, y being Point of S holds x,y are_collinear );
:: deftheorem Def9 defines without_isolated_points PENCIL_1:def 9 :
for S being TopStruct holds
( S is without_isolated_points iff for x being Point of S ex l being Block of S st x in l );
:: deftheorem defines connected PENCIL_1:def 10 :
for S being TopStruct holds
( S is connected iff for x, y being Point of S ex f being FinSequence of the carrier of S st
( x = f . 1 & y = f . (len f) & ( for i being Nat st 1 <= i & i < len f holds
for a, b being Point of S st a = f . i & b = f . (i + 1) holds
a,b are_collinear ) ) );
:: deftheorem Def11 defines strongly_connected PENCIL_1:def 11 :
for S being TopStruct holds
( S is strongly_connected iff for x being Point of S
for X being Subset of S st X is closed_under_lines & X is strong holds
ex f being FinSequence of bool the carrier of S st
( X = f . 1 & x in f . (len f) & ( for W being Subset of S st W in rng f holds
( W is closed_under_lines & W is strong ) ) & ( for i being Nat st 1 <= i & i < len f holds
2 c= card ((f . i) /\ (f . (i + 1))) ) ) );
theorem Th7:
Lm1:
ex S being TopStruct st
( S is strict & not S is empty & not S is void & not S is degenerated & not S is truly-partial & S is with_non_trivial_blocks & S is identifying_close_blocks & S is without_isolated_points )
theorem Th8:
Lm2:
ex S being TopStruct st
( S is strict & not S is empty & not S is void & not S is degenerated & S is truly-partial & S is with_non_trivial_blocks & S is identifying_close_blocks & S is without_isolated_points )
:: deftheorem defines are_collinear PENCIL_1:def 12 :
for S being without_isolated_points TopStruct
for x, y being Point of S holds
( x,y are_collinear iff ex l being Block of S st {x,y} c= l );
:: deftheorem Def13 defines TopStruct-yielding PENCIL_1:def 13 :
for F being Relation holds
( F is TopStruct-yielding iff for x being set st x in rng F holds
x is TopStruct );
:: deftheorem Def14 defines non-void-yielding PENCIL_1:def 14 :
for F being Relation holds
( F is non-void-yielding iff for S being TopStruct st S in rng F holds
not S is void );
:: deftheorem defines non-void-yielding PENCIL_1:def 15 :
for F being TopStruct-yielding Function holds
( F is non-void-yielding iff for i being set st i in rng F holds
i is non void TopStruct );
:: deftheorem Def16 defines trivial-yielding PENCIL_1:def 16 :
for F being Relation holds
( F is trivial-yielding iff for S being set st S in rng F holds
S is trivial );
:: deftheorem Def17 defines non-Trivial-yielding PENCIL_1:def 17 :
for F being Relation holds
( F is non-Trivial-yielding iff for S being 1-sorted st S in rng F holds
not S is trivial );
:: deftheorem defines non-Trivial-yielding PENCIL_1:def 18 :
for F being 1-sorted-yielding Function holds
( F is non-Trivial-yielding iff for i being set st i in rng F holds
i is non trivial 1-sorted );
:: deftheorem Def19 defines PLS-yielding PENCIL_1:def 19 :
for F being Relation holds
( F is PLS-yielding iff for x being set st x in rng F holds
x is PLS );
:: deftheorem Def20 defines Segre-like PENCIL_1:def 20 :
for I being set
for A being ManySortedSet of I holds
( A is Segre-like iff ex i being Element of I st
for j being Element of I st i <> j holds
( not A . j is empty & A . j is trivial ) );
theorem
theorem
theorem Th11:
:: deftheorem Def21 defines indx PENCIL_1:def 21 :
for I being non empty set
for B being non trivial-yielding Segre-like ManySortedSet of I
for b3 being Element of I holds
( b3 = indx B iff not B . b3 is trivial );
theorem Th12:
theorem Th13:
begin
:: deftheorem Def22 defines Segre_Blocks PENCIL_1:def 22 :
for I being non empty set
for A being non-Empty TopStruct-yielding ManySortedSet of I
for b3 being Subset-Family of (product (Carrier A)) holds
( b3 = Segre_Blocks A iff for x being set holds
( x in b3 iff ex B being Segre-like ManySortedSubset of Carrier A st
( x = product B & ex i being Element of I st B . i is Block of (A . i) ) ) );
:: deftheorem defines Segre_Product PENCIL_1:def 23 :
for I being non empty set
for A being non-Empty TopStruct-yielding ManySortedSet of I holds Segre_Product A = TopStruct(# (product (Carrier A)),(Segre_Blocks A) #);
theorem Th14:
theorem Th15:
theorem Th16:
theorem Th17:
theorem Th18:
theorem
theorem Th20:
theorem Th21:
theorem
theorem Th23:
theorem Th24:
theorem Th25:
theorem Th26:
theorem Th27:
theorem
theorem