begin
definition
let f be
PartFunc of
(REAL 3),
REAL;
let u be
Element of
REAL 3;
pred f is_hpartial_differentiable`11_in u means :
Def1:
ex
x0,
y0,
z0 being
Real st
(
u = <*x0,y0,z0*> & ex
N being
Neighbourhood of
x0 st
(
N c= dom (SVF1 (1,(pdiff1 (f,1)),u)) & ex
L being
LINEAR ex
R being
REST st
for
x being
Real st
x in N holds
((SVF1 (1,(pdiff1 (f,1)),u)) . x) - ((SVF1 (1,(pdiff1 (f,1)),u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) );
pred f is_hpartial_differentiable`12_in u means :
Def2:
ex
x0,
y0,
z0 being
Real st
(
u = <*x0,y0,z0*> & ex
N being
Neighbourhood of
y0 st
(
N c= dom (SVF1 (2,(pdiff1 (f,1)),u)) & ex
L being
LINEAR ex
R being
REST st
for
y being
Real st
y in N holds
((SVF1 (2,(pdiff1 (f,1)),u)) . y) - ((SVF1 (2,(pdiff1 (f,1)),u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) );
pred f is_hpartial_differentiable`13_in u means :
Def3:
ex
x0,
y0,
z0 being
Real st
(
u = <*x0,y0,z0*> & ex
N being
Neighbourhood of
z0 st
(
N c= dom (SVF1 (3,(pdiff1 (f,1)),u)) & ex
L being
LINEAR ex
R being
REST st
for
z being
Real st
z in N holds
((SVF1 (3,(pdiff1 (f,1)),u)) . z) - ((SVF1 (3,(pdiff1 (f,1)),u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) );
pred f is_hpartial_differentiable`21_in u means :
Def4:
ex
x0,
y0,
z0 being
Real st
(
u = <*x0,y0,z0*> & ex
N being
Neighbourhood of
x0 st
(
N c= dom (SVF1 (1,(pdiff1 (f,2)),u)) & ex
L being
LINEAR ex
R being
REST st
for
x being
Real st
x in N holds
((SVF1 (1,(pdiff1 (f,2)),u)) . x) - ((SVF1 (1,(pdiff1 (f,2)),u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) );
pred f is_hpartial_differentiable`22_in u means :
Def5:
ex
x0,
y0,
z0 being
Real st
(
u = <*x0,y0,z0*> & ex
N being
Neighbourhood of
y0 st
(
N c= dom (SVF1 (2,(pdiff1 (f,2)),u)) & ex
L being
LINEAR ex
R being
REST st
for
y being
Real st
y in N holds
((SVF1 (2,(pdiff1 (f,2)),u)) . y) - ((SVF1 (2,(pdiff1 (f,2)),u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) );
pred f is_hpartial_differentiable`23_in u means :
Def6:
ex
x0,
y0,
z0 being
Real st
(
u = <*x0,y0,z0*> & ex
N being
Neighbourhood of
z0 st
(
N c= dom (SVF1 (3,(pdiff1 (f,2)),u)) & ex
L being
LINEAR ex
R being
REST st
for
z being
Real st
z in N holds
((SVF1 (3,(pdiff1 (f,2)),u)) . z) - ((SVF1 (3,(pdiff1 (f,2)),u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) );
pred f is_hpartial_differentiable`31_in u means :
Def7:
ex
x0,
y0,
z0 being
Real st
(
u = <*x0,y0,z0*> & ex
N being
Neighbourhood of
x0 st
(
N c= dom (SVF1 (1,(pdiff1 (f,3)),u)) & ex
L being
LINEAR ex
R being
REST st
for
x being
Real st
x in N holds
((SVF1 (1,(pdiff1 (f,3)),u)) . x) - ((SVF1 (1,(pdiff1 (f,3)),u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) );
pred f is_hpartial_differentiable`32_in u means :
Def8:
ex
x0,
y0,
z0 being
Real st
(
u = <*x0,y0,z0*> & ex
N being
Neighbourhood of
y0 st
(
N c= dom (SVF1 (2,(pdiff1 (f,3)),u)) & ex
L being
LINEAR ex
R being
REST st
for
y being
Real st
y in N holds
((SVF1 (2,(pdiff1 (f,3)),u)) . y) - ((SVF1 (2,(pdiff1 (f,3)),u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) );
pred f is_hpartial_differentiable`33_in u means :
Def9:
ex
x0,
y0,
z0 being
Real st
(
u = <*x0,y0,z0*> & ex
N being
Neighbourhood of
z0 st
(
N c= dom (SVF1 (3,(pdiff1 (f,3)),u)) & ex
L being
LINEAR ex
R being
REST st
for
z being
Real st
z in N holds
((SVF1 (3,(pdiff1 (f,3)),u)) . z) - ((SVF1 (3,(pdiff1 (f,3)),u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) );
end;
:: deftheorem Def1 defines is_hpartial_differentiable`11_in PDIFF_5:def 1 :
for f being PartFunc of (REAL 3),REAL
for u being Element of REAL 3 holds
( f is_hpartial_differentiable`11_in u iff ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st
( N c= dom (SVF1 (1,(pdiff1 (f,1)),u)) & ex L being LINEAR ex R being REST st
for x being Real st x in N holds
((SVF1 (1,(pdiff1 (f,1)),u)) . x) - ((SVF1 (1,(pdiff1 (f,1)),u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) );
:: deftheorem Def2 defines is_hpartial_differentiable`12_in PDIFF_5:def 2 :
for f being PartFunc of (REAL 3),REAL
for u being Element of REAL 3 holds
( f is_hpartial_differentiable`12_in u iff ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st
( N c= dom (SVF1 (2,(pdiff1 (f,1)),u)) & ex L being LINEAR ex R being REST st
for y being Real st y in N holds
((SVF1 (2,(pdiff1 (f,1)),u)) . y) - ((SVF1 (2,(pdiff1 (f,1)),u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) );
:: deftheorem Def3 defines is_hpartial_differentiable`13_in PDIFF_5:def 3 :
for f being PartFunc of (REAL 3),REAL
for u being Element of REAL 3 holds
( f is_hpartial_differentiable`13_in u iff ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st
( N c= dom (SVF1 (3,(pdiff1 (f,1)),u)) & ex L being LINEAR ex R being REST st
for z being Real st z in N holds
((SVF1 (3,(pdiff1 (f,1)),u)) . z) - ((SVF1 (3,(pdiff1 (f,1)),u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) );
:: deftheorem Def4 defines is_hpartial_differentiable`21_in PDIFF_5:def 4 :
for f being PartFunc of (REAL 3),REAL
for u being Element of REAL 3 holds
( f is_hpartial_differentiable`21_in u iff ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st
( N c= dom (SVF1 (1,(pdiff1 (f,2)),u)) & ex L being LINEAR ex R being REST st
for x being Real st x in N holds
((SVF1 (1,(pdiff1 (f,2)),u)) . x) - ((SVF1 (1,(pdiff1 (f,2)),u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) );
:: deftheorem Def5 defines is_hpartial_differentiable`22_in PDIFF_5:def 5 :
for f being PartFunc of (REAL 3),REAL
for u being Element of REAL 3 holds
( f is_hpartial_differentiable`22_in u iff ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st
( N c= dom (SVF1 (2,(pdiff1 (f,2)),u)) & ex L being LINEAR ex R being REST st
for y being Real st y in N holds
((SVF1 (2,(pdiff1 (f,2)),u)) . y) - ((SVF1 (2,(pdiff1 (f,2)),u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) );
:: deftheorem Def6 defines is_hpartial_differentiable`23_in PDIFF_5:def 6 :
for f being PartFunc of (REAL 3),REAL
for u being Element of REAL 3 holds
( f is_hpartial_differentiable`23_in u iff ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st
( N c= dom (SVF1 (3,(pdiff1 (f,2)),u)) & ex L being LINEAR ex R being REST st
for z being Real st z in N holds
((SVF1 (3,(pdiff1 (f,2)),u)) . z) - ((SVF1 (3,(pdiff1 (f,2)),u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) );
:: deftheorem Def7 defines is_hpartial_differentiable`31_in PDIFF_5:def 7 :
for f being PartFunc of (REAL 3),REAL
for u being Element of REAL 3 holds
( f is_hpartial_differentiable`31_in u iff ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st
( N c= dom (SVF1 (1,(pdiff1 (f,3)),u)) & ex L being LINEAR ex R being REST st
for x being Real st x in N holds
((SVF1 (1,(pdiff1 (f,3)),u)) . x) - ((SVF1 (1,(pdiff1 (f,3)),u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) );
:: deftheorem Def8 defines is_hpartial_differentiable`32_in PDIFF_5:def 8 :
for f being PartFunc of (REAL 3),REAL
for u being Element of REAL 3 holds
( f is_hpartial_differentiable`32_in u iff ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st
( N c= dom (SVF1 (2,(pdiff1 (f,3)),u)) & ex L being LINEAR ex R being REST st
for y being Real st y in N holds
((SVF1 (2,(pdiff1 (f,3)),u)) . y) - ((SVF1 (2,(pdiff1 (f,3)),u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) );
:: deftheorem Def9 defines is_hpartial_differentiable`33_in PDIFF_5:def 9 :
for f being PartFunc of (REAL 3),REAL
for u being Element of REAL 3 holds
( f is_hpartial_differentiable`33_in u iff ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st
( N c= dom (SVF1 (3,(pdiff1 (f,3)),u)) & ex L being LINEAR ex R being REST st
for z being Real st z in N holds
((SVF1 (3,(pdiff1 (f,3)),u)) . z) - ((SVF1 (3,(pdiff1 (f,3)),u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) );
definition
let f be
PartFunc of
(REAL 3),
REAL;
let u be
Element of
REAL 3;
assume A1:
f is_hpartial_differentiable`11_in u
;
func hpartdiff11 (
f,
u)
-> Real means :
Def10:
ex
x0,
y0,
z0 being
Real st
(
u = <*x0,y0,z0*> & ex
N being
Neighbourhood of
x0 st
(
N c= dom (SVF1 (1,(pdiff1 (f,1)),u)) & ex
L being
LINEAR ex
R being
REST st
(
it = L . 1 & ( for
x being
Real st
x in N holds
((SVF1 (1,(pdiff1 (f,1)),u)) . x) - ((SVF1 (1,(pdiff1 (f,1)),u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) );
existence
ex b1, x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st
( N c= dom (SVF1 (1,(pdiff1 (f,1)),u)) & ex L being LINEAR ex R being REST st
( b1 = L . 1 & ( for x being Real st x in N holds
((SVF1 (1,(pdiff1 (f,1)),u)) . x) - ((SVF1 (1,(pdiff1 (f,1)),u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) )
uniqueness
for b1, b2 being Real st ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st
( N c= dom (SVF1 (1,(pdiff1 (f,1)),u)) & ex L being LINEAR ex R being REST st
( b1 = L . 1 & ( for x being Real st x in N holds
((SVF1 (1,(pdiff1 (f,1)),u)) . x) - ((SVF1 (1,(pdiff1 (f,1)),u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) & ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st
( N c= dom (SVF1 (1,(pdiff1 (f,1)),u)) & ex L being LINEAR ex R being REST st
( b2 = L . 1 & ( for x being Real st x in N holds
((SVF1 (1,(pdiff1 (f,1)),u)) . x) - ((SVF1 (1,(pdiff1 (f,1)),u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) holds
b1 = b2
end;
:: deftheorem Def10 defines hpartdiff11 PDIFF_5:def 10 :
for f being PartFunc of (REAL 3),REAL
for u being Element of REAL 3 st f is_hpartial_differentiable`11_in u holds
for b3 being Real holds
( b3 = hpartdiff11 (f,u) iff ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st
( N c= dom (SVF1 (1,(pdiff1 (f,1)),u)) & ex L being LINEAR ex R being REST st
( b3 = L . 1 & ( for x being Real st x in N holds
((SVF1 (1,(pdiff1 (f,1)),u)) . x) - ((SVF1 (1,(pdiff1 (f,1)),u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) );
definition
let f be
PartFunc of
(REAL 3),
REAL;
let u be
Element of
REAL 3;
assume A1:
f is_hpartial_differentiable`12_in u
;
func hpartdiff12 (
f,
u)
-> Real means :
Def11:
ex
x0,
y0,
z0 being
Real st
(
u = <*x0,y0,z0*> & ex
N being
Neighbourhood of
y0 st
(
N c= dom (SVF1 (2,(pdiff1 (f,1)),u)) & ex
L being
LINEAR ex
R being
REST st
(
it = L . 1 & ( for
y being
Real st
y in N holds
((SVF1 (2,(pdiff1 (f,1)),u)) . y) - ((SVF1 (2,(pdiff1 (f,1)),u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) );
existence
ex b1, x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st
( N c= dom (SVF1 (2,(pdiff1 (f,1)),u)) & ex L being LINEAR ex R being REST st
( b1 = L . 1 & ( for y being Real st y in N holds
((SVF1 (2,(pdiff1 (f,1)),u)) . y) - ((SVF1 (2,(pdiff1 (f,1)),u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) )
uniqueness
for b1, b2 being Real st ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st
( N c= dom (SVF1 (2,(pdiff1 (f,1)),u)) & ex L being LINEAR ex R being REST st
( b1 = L . 1 & ( for y being Real st y in N holds
((SVF1 (2,(pdiff1 (f,1)),u)) . y) - ((SVF1 (2,(pdiff1 (f,1)),u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) & ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st
( N c= dom (SVF1 (2,(pdiff1 (f,1)),u)) & ex L being LINEAR ex R being REST st
( b2 = L . 1 & ( for y being Real st y in N holds
((SVF1 (2,(pdiff1 (f,1)),u)) . y) - ((SVF1 (2,(pdiff1 (f,1)),u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) holds
b1 = b2
end;
:: deftheorem Def11 defines hpartdiff12 PDIFF_5:def 11 :
for f being PartFunc of (REAL 3),REAL
for u being Element of REAL 3 st f is_hpartial_differentiable`12_in u holds
for b3 being Real holds
( b3 = hpartdiff12 (f,u) iff ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st
( N c= dom (SVF1 (2,(pdiff1 (f,1)),u)) & ex L being LINEAR ex R being REST st
( b3 = L . 1 & ( for y being Real st y in N holds
((SVF1 (2,(pdiff1 (f,1)),u)) . y) - ((SVF1 (2,(pdiff1 (f,1)),u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) );
definition
let f be
PartFunc of
(REAL 3),
REAL;
let u be
Element of
REAL 3;
assume A1:
f is_hpartial_differentiable`13_in u
;
func hpartdiff13 (
f,
u)
-> Real means :
Def12:
ex
x0,
y0,
z0 being
Real st
(
u = <*x0,y0,z0*> & ex
N being
Neighbourhood of
z0 st
(
N c= dom (SVF1 (3,(pdiff1 (f,1)),u)) & ex
L being
LINEAR ex
R being
REST st
(
it = L . 1 & ( for
z being
Real st
z in N holds
((SVF1 (3,(pdiff1 (f,1)),u)) . z) - ((SVF1 (3,(pdiff1 (f,1)),u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) );
existence
ex b1, x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st
( N c= dom (SVF1 (3,(pdiff1 (f,1)),u)) & ex L being LINEAR ex R being REST st
( b1 = L . 1 & ( for z being Real st z in N holds
((SVF1 (3,(pdiff1 (f,1)),u)) . z) - ((SVF1 (3,(pdiff1 (f,1)),u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) )
uniqueness
for b1, b2 being Real st ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st
( N c= dom (SVF1 (3,(pdiff1 (f,1)),u)) & ex L being LINEAR ex R being REST st
( b1 = L . 1 & ( for z being Real st z in N holds
((SVF1 (3,(pdiff1 (f,1)),u)) . z) - ((SVF1 (3,(pdiff1 (f,1)),u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) & ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st
( N c= dom (SVF1 (3,(pdiff1 (f,1)),u)) & ex L being LINEAR ex R being REST st
( b2 = L . 1 & ( for z being Real st z in N holds
((SVF1 (3,(pdiff1 (f,1)),u)) . z) - ((SVF1 (3,(pdiff1 (f,1)),u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) holds
b1 = b2
end;
:: deftheorem Def12 defines hpartdiff13 PDIFF_5:def 12 :
for f being PartFunc of (REAL 3),REAL
for u being Element of REAL 3 st f is_hpartial_differentiable`13_in u holds
for b3 being Real holds
( b3 = hpartdiff13 (f,u) iff ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st
( N c= dom (SVF1 (3,(pdiff1 (f,1)),u)) & ex L being LINEAR ex R being REST st
( b3 = L . 1 & ( for z being Real st z in N holds
((SVF1 (3,(pdiff1 (f,1)),u)) . z) - ((SVF1 (3,(pdiff1 (f,1)),u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) );
definition
let f be
PartFunc of
(REAL 3),
REAL;
let u be
Element of
REAL 3;
assume A1:
f is_hpartial_differentiable`21_in u
;
func hpartdiff21 (
f,
u)
-> Real means :
Def13:
ex
x0,
y0,
z0 being
Real st
(
u = <*x0,y0,z0*> & ex
N being
Neighbourhood of
x0 st
(
N c= dom (SVF1 (1,(pdiff1 (f,2)),u)) & ex
L being
LINEAR ex
R being
REST st
(
it = L . 1 & ( for
x being
Real st
x in N holds
((SVF1 (1,(pdiff1 (f,2)),u)) . x) - ((SVF1 (1,(pdiff1 (f,2)),u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) );
existence
ex b1, x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st
( N c= dom (SVF1 (1,(pdiff1 (f,2)),u)) & ex L being LINEAR ex R being REST st
( b1 = L . 1 & ( for x being Real st x in N holds
((SVF1 (1,(pdiff1 (f,2)),u)) . x) - ((SVF1 (1,(pdiff1 (f,2)),u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) )
uniqueness
for b1, b2 being Real st ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st
( N c= dom (SVF1 (1,(pdiff1 (f,2)),u)) & ex L being LINEAR ex R being REST st
( b1 = L . 1 & ( for x being Real st x in N holds
((SVF1 (1,(pdiff1 (f,2)),u)) . x) - ((SVF1 (1,(pdiff1 (f,2)),u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) & ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st
( N c= dom (SVF1 (1,(pdiff1 (f,2)),u)) & ex L being LINEAR ex R being REST st
( b2 = L . 1 & ( for x being Real st x in N holds
((SVF1 (1,(pdiff1 (f,2)),u)) . x) - ((SVF1 (1,(pdiff1 (f,2)),u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) holds
b1 = b2
end;
:: deftheorem Def13 defines hpartdiff21 PDIFF_5:def 13 :
for f being PartFunc of (REAL 3),REAL
for u being Element of REAL 3 st f is_hpartial_differentiable`21_in u holds
for b3 being Real holds
( b3 = hpartdiff21 (f,u) iff ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st
( N c= dom (SVF1 (1,(pdiff1 (f,2)),u)) & ex L being LINEAR ex R being REST st
( b3 = L . 1 & ( for x being Real st x in N holds
((SVF1 (1,(pdiff1 (f,2)),u)) . x) - ((SVF1 (1,(pdiff1 (f,2)),u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) );
definition
let f be
PartFunc of
(REAL 3),
REAL;
let u be
Element of
REAL 3;
assume A1:
f is_hpartial_differentiable`22_in u
;
func hpartdiff22 (
f,
u)
-> Real means :
Def14:
ex
x0,
y0,
z0 being
Real st
(
u = <*x0,y0,z0*> & ex
N being
Neighbourhood of
y0 st
(
N c= dom (SVF1 (2,(pdiff1 (f,2)),u)) & ex
L being
LINEAR ex
R being
REST st
(
it = L . 1 & ( for
y being
Real st
y in N holds
((SVF1 (2,(pdiff1 (f,2)),u)) . y) - ((SVF1 (2,(pdiff1 (f,2)),u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) );
existence
ex b1, x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st
( N c= dom (SVF1 (2,(pdiff1 (f,2)),u)) & ex L being LINEAR ex R being REST st
( b1 = L . 1 & ( for y being Real st y in N holds
((SVF1 (2,(pdiff1 (f,2)),u)) . y) - ((SVF1 (2,(pdiff1 (f,2)),u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) )
uniqueness
for b1, b2 being Real st ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st
( N c= dom (SVF1 (2,(pdiff1 (f,2)),u)) & ex L being LINEAR ex R being REST st
( b1 = L . 1 & ( for y being Real st y in N holds
((SVF1 (2,(pdiff1 (f,2)),u)) . y) - ((SVF1 (2,(pdiff1 (f,2)),u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) & ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st
( N c= dom (SVF1 (2,(pdiff1 (f,2)),u)) & ex L being LINEAR ex R being REST st
( b2 = L . 1 & ( for y being Real st y in N holds
((SVF1 (2,(pdiff1 (f,2)),u)) . y) - ((SVF1 (2,(pdiff1 (f,2)),u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) holds
b1 = b2
end;
:: deftheorem Def14 defines hpartdiff22 PDIFF_5:def 14 :
for f being PartFunc of (REAL 3),REAL
for u being Element of REAL 3 st f is_hpartial_differentiable`22_in u holds
for b3 being Real holds
( b3 = hpartdiff22 (f,u) iff ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st
( N c= dom (SVF1 (2,(pdiff1 (f,2)),u)) & ex L being LINEAR ex R being REST st
( b3 = L . 1 & ( for y being Real st y in N holds
((SVF1 (2,(pdiff1 (f,2)),u)) . y) - ((SVF1 (2,(pdiff1 (f,2)),u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) );
definition
let f be
PartFunc of
(REAL 3),
REAL;
let u be
Element of
REAL 3;
assume A1:
f is_hpartial_differentiable`23_in u
;
func hpartdiff23 (
f,
u)
-> Real means :
Def15:
ex
x0,
y0,
z0 being
Real st
(
u = <*x0,y0,z0*> & ex
N being
Neighbourhood of
z0 st
(
N c= dom (SVF1 (3,(pdiff1 (f,2)),u)) & ex
L being
LINEAR ex
R being
REST st
(
it = L . 1 & ( for
z being
Real st
z in N holds
((SVF1 (3,(pdiff1 (f,2)),u)) . z) - ((SVF1 (3,(pdiff1 (f,2)),u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) );
existence
ex b1, x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st
( N c= dom (SVF1 (3,(pdiff1 (f,2)),u)) & ex L being LINEAR ex R being REST st
( b1 = L . 1 & ( for z being Real st z in N holds
((SVF1 (3,(pdiff1 (f,2)),u)) . z) - ((SVF1 (3,(pdiff1 (f,2)),u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) )
uniqueness
for b1, b2 being Real st ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st
( N c= dom (SVF1 (3,(pdiff1 (f,2)),u)) & ex L being LINEAR ex R being REST st
( b1 = L . 1 & ( for z being Real st z in N holds
((SVF1 (3,(pdiff1 (f,2)),u)) . z) - ((SVF1 (3,(pdiff1 (f,2)),u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) & ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st
( N c= dom (SVF1 (3,(pdiff1 (f,2)),u)) & ex L being LINEAR ex R being REST st
( b2 = L . 1 & ( for z being Real st z in N holds
((SVF1 (3,(pdiff1 (f,2)),u)) . z) - ((SVF1 (3,(pdiff1 (f,2)),u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) holds
b1 = b2
end;
:: deftheorem Def15 defines hpartdiff23 PDIFF_5:def 15 :
for f being PartFunc of (REAL 3),REAL
for u being Element of REAL 3 st f is_hpartial_differentiable`23_in u holds
for b3 being Real holds
( b3 = hpartdiff23 (f,u) iff ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st
( N c= dom (SVF1 (3,(pdiff1 (f,2)),u)) & ex L being LINEAR ex R being REST st
( b3 = L . 1 & ( for z being Real st z in N holds
((SVF1 (3,(pdiff1 (f,2)),u)) . z) - ((SVF1 (3,(pdiff1 (f,2)),u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) );
definition
let f be
PartFunc of
(REAL 3),
REAL;
let u be
Element of
REAL 3;
assume A1:
f is_hpartial_differentiable`31_in u
;
func hpartdiff31 (
f,
u)
-> Real means :
Def16:
ex
x0,
y0,
z0 being
Real st
(
u = <*x0,y0,z0*> & ex
N being
Neighbourhood of
x0 st
(
N c= dom (SVF1 (1,(pdiff1 (f,3)),u)) & ex
L being
LINEAR ex
R being
REST st
(
it = L . 1 & ( for
x being
Real st
x in N holds
((SVF1 (1,(pdiff1 (f,3)),u)) . x) - ((SVF1 (1,(pdiff1 (f,3)),u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) );
existence
ex b1, x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st
( N c= dom (SVF1 (1,(pdiff1 (f,3)),u)) & ex L being LINEAR ex R being REST st
( b1 = L . 1 & ( for x being Real st x in N holds
((SVF1 (1,(pdiff1 (f,3)),u)) . x) - ((SVF1 (1,(pdiff1 (f,3)),u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) )
uniqueness
for b1, b2 being Real st ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st
( N c= dom (SVF1 (1,(pdiff1 (f,3)),u)) & ex L being LINEAR ex R being REST st
( b1 = L . 1 & ( for x being Real st x in N holds
((SVF1 (1,(pdiff1 (f,3)),u)) . x) - ((SVF1 (1,(pdiff1 (f,3)),u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) & ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st
( N c= dom (SVF1 (1,(pdiff1 (f,3)),u)) & ex L being LINEAR ex R being REST st
( b2 = L . 1 & ( for x being Real st x in N holds
((SVF1 (1,(pdiff1 (f,3)),u)) . x) - ((SVF1 (1,(pdiff1 (f,3)),u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) holds
b1 = b2
end;
:: deftheorem Def16 defines hpartdiff31 PDIFF_5:def 16 :
for f being PartFunc of (REAL 3),REAL
for u being Element of REAL 3 st f is_hpartial_differentiable`31_in u holds
for b3 being Real holds
( b3 = hpartdiff31 (f,u) iff ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of x0 st
( N c= dom (SVF1 (1,(pdiff1 (f,3)),u)) & ex L being LINEAR ex R being REST st
( b3 = L . 1 & ( for x being Real st x in N holds
((SVF1 (1,(pdiff1 (f,3)),u)) . x) - ((SVF1 (1,(pdiff1 (f,3)),u)) . x0) = (L . (x - x0)) + (R . (x - x0)) ) ) ) ) );
definition
let f be
PartFunc of
(REAL 3),
REAL;
let u be
Element of
REAL 3;
assume A1:
f is_hpartial_differentiable`32_in u
;
func hpartdiff32 (
f,
u)
-> Real means :
Def17:
ex
x0,
y0,
z0 being
Real st
(
u = <*x0,y0,z0*> & ex
N being
Neighbourhood of
y0 st
(
N c= dom (SVF1 (2,(pdiff1 (f,3)),u)) & ex
L being
LINEAR ex
R being
REST st
(
it = L . 1 & ( for
y being
Real st
y in N holds
((SVF1 (2,(pdiff1 (f,3)),u)) . y) - ((SVF1 (2,(pdiff1 (f,3)),u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) );
existence
ex b1, x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st
( N c= dom (SVF1 (2,(pdiff1 (f,3)),u)) & ex L being LINEAR ex R being REST st
( b1 = L . 1 & ( for y being Real st y in N holds
((SVF1 (2,(pdiff1 (f,3)),u)) . y) - ((SVF1 (2,(pdiff1 (f,3)),u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) )
uniqueness
for b1, b2 being Real st ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st
( N c= dom (SVF1 (2,(pdiff1 (f,3)),u)) & ex L being LINEAR ex R being REST st
( b1 = L . 1 & ( for y being Real st y in N holds
((SVF1 (2,(pdiff1 (f,3)),u)) . y) - ((SVF1 (2,(pdiff1 (f,3)),u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) & ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st
( N c= dom (SVF1 (2,(pdiff1 (f,3)),u)) & ex L being LINEAR ex R being REST st
( b2 = L . 1 & ( for y being Real st y in N holds
((SVF1 (2,(pdiff1 (f,3)),u)) . y) - ((SVF1 (2,(pdiff1 (f,3)),u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) holds
b1 = b2
end;
:: deftheorem Def17 defines hpartdiff32 PDIFF_5:def 17 :
for f being PartFunc of (REAL 3),REAL
for u being Element of REAL 3 st f is_hpartial_differentiable`32_in u holds
for b3 being Real holds
( b3 = hpartdiff32 (f,u) iff ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of y0 st
( N c= dom (SVF1 (2,(pdiff1 (f,3)),u)) & ex L being LINEAR ex R being REST st
( b3 = L . 1 & ( for y being Real st y in N holds
((SVF1 (2,(pdiff1 (f,3)),u)) . y) - ((SVF1 (2,(pdiff1 (f,3)),u)) . y0) = (L . (y - y0)) + (R . (y - y0)) ) ) ) ) );
definition
let f be
PartFunc of
(REAL 3),
REAL;
let u be
Element of
REAL 3;
assume A1:
f is_hpartial_differentiable`33_in u
;
func hpartdiff33 (
f,
u)
-> Real means :
Def18:
ex
x0,
y0,
z0 being
Real st
(
u = <*x0,y0,z0*> & ex
N being
Neighbourhood of
z0 st
(
N c= dom (SVF1 (3,(pdiff1 (f,3)),u)) & ex
L being
LINEAR ex
R being
REST st
(
it = L . 1 & ( for
z being
Real st
z in N holds
((SVF1 (3,(pdiff1 (f,3)),u)) . z) - ((SVF1 (3,(pdiff1 (f,3)),u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) );
existence
ex b1, x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st
( N c= dom (SVF1 (3,(pdiff1 (f,3)),u)) & ex L being LINEAR ex R being REST st
( b1 = L . 1 & ( for z being Real st z in N holds
((SVF1 (3,(pdiff1 (f,3)),u)) . z) - ((SVF1 (3,(pdiff1 (f,3)),u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) )
uniqueness
for b1, b2 being Real st ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st
( N c= dom (SVF1 (3,(pdiff1 (f,3)),u)) & ex L being LINEAR ex R being REST st
( b1 = L . 1 & ( for z being Real st z in N holds
((SVF1 (3,(pdiff1 (f,3)),u)) . z) - ((SVF1 (3,(pdiff1 (f,3)),u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) & ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st
( N c= dom (SVF1 (3,(pdiff1 (f,3)),u)) & ex L being LINEAR ex R being REST st
( b2 = L . 1 & ( for z being Real st z in N holds
((SVF1 (3,(pdiff1 (f,3)),u)) . z) - ((SVF1 (3,(pdiff1 (f,3)),u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) holds
b1 = b2
end;
:: deftheorem Def18 defines hpartdiff33 PDIFF_5:def 18 :
for f being PartFunc of (REAL 3),REAL
for u being Element of REAL 3 st f is_hpartial_differentiable`33_in u holds
for b3 being Real holds
( b3 = hpartdiff33 (f,u) iff ex x0, y0, z0 being Real st
( u = <*x0,y0,z0*> & ex N being Neighbourhood of z0 st
( N c= dom (SVF1 (3,(pdiff1 (f,3)),u)) & ex L being LINEAR ex R being REST st
( b3 = L . 1 & ( for z being Real st z in N holds
((SVF1 (3,(pdiff1 (f,3)),u)) . z) - ((SVF1 (3,(pdiff1 (f,3)),u)) . z0) = (L . (z - z0)) + (R . (z - z0)) ) ) ) ) );
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem Th10:
for
x0,
y0,
z0 being
Real for
u being
Element of
REAL 3
for
f being
PartFunc of
(REAL 3),
REAL st
u = <*x0,y0,z0*> &
f is_hpartial_differentiable`11_in u holds
hpartdiff11 (
f,
u)
= diff (
(SVF1 (1,(pdiff1 (f,1)),u)),
x0)
theorem Th11:
for
x0,
y0,
z0 being
Real for
u being
Element of
REAL 3
for
f being
PartFunc of
(REAL 3),
REAL st
u = <*x0,y0,z0*> &
f is_hpartial_differentiable`12_in u holds
hpartdiff12 (
f,
u)
= diff (
(SVF1 (2,(pdiff1 (f,1)),u)),
y0)
theorem Th12:
for
x0,
y0,
z0 being
Real for
u being
Element of
REAL 3
for
f being
PartFunc of
(REAL 3),
REAL st
u = <*x0,y0,z0*> &
f is_hpartial_differentiable`13_in u holds
hpartdiff13 (
f,
u)
= diff (
(SVF1 (3,(pdiff1 (f,1)),u)),
z0)
theorem Th13:
for
x0,
y0,
z0 being
Real for
u being
Element of
REAL 3
for
f being
PartFunc of
(REAL 3),
REAL st
u = <*x0,y0,z0*> &
f is_hpartial_differentiable`21_in u holds
hpartdiff21 (
f,
u)
= diff (
(SVF1 (1,(pdiff1 (f,2)),u)),
x0)
theorem Th14:
for
x0,
y0,
z0 being
Real for
u being
Element of
REAL 3
for
f being
PartFunc of
(REAL 3),
REAL st
u = <*x0,y0,z0*> &
f is_hpartial_differentiable`22_in u holds
hpartdiff22 (
f,
u)
= diff (
(SVF1 (2,(pdiff1 (f,2)),u)),
y0)
theorem Th15:
for
x0,
y0,
z0 being
Real for
u being
Element of
REAL 3
for
f being
PartFunc of
(REAL 3),
REAL st
u = <*x0,y0,z0*> &
f is_hpartial_differentiable`23_in u holds
hpartdiff23 (
f,
u)
= diff (
(SVF1 (3,(pdiff1 (f,2)),u)),
z0)
theorem Th16:
for
x0,
y0,
z0 being
Real for
u being
Element of
REAL 3
for
f being
PartFunc of
(REAL 3),
REAL st
u = <*x0,y0,z0*> &
f is_hpartial_differentiable`31_in u holds
hpartdiff31 (
f,
u)
= diff (
(SVF1 (1,(pdiff1 (f,3)),u)),
x0)
theorem Th17:
for
x0,
y0,
z0 being
Real for
u being
Element of
REAL 3
for
f being
PartFunc of
(REAL 3),
REAL st
u = <*x0,y0,z0*> &
f is_hpartial_differentiable`32_in u holds
hpartdiff32 (
f,
u)
= diff (
(SVF1 (2,(pdiff1 (f,3)),u)),
y0)
theorem Th18:
for
x0,
y0,
z0 being
Real for
u being
Element of
REAL 3
for
f being
PartFunc of
(REAL 3),
REAL st
u = <*x0,y0,z0*> &
f is_hpartial_differentiable`33_in u holds
hpartdiff33 (
f,
u)
= diff (
(SVF1 (3,(pdiff1 (f,3)),u)),
z0)
:: deftheorem Def19 defines is_hpartial_differentiable`11_on PDIFF_5:def 19 :
for f being PartFunc of (REAL 3),REAL
for D being set holds
( f is_hpartial_differentiable`11_on D iff ( D c= dom f & ( for u being Element of REAL 3 st u in D holds
f | D is_hpartial_differentiable`11_in u ) ) );
:: deftheorem Def20 defines is_hpartial_differentiable`12_on PDIFF_5:def 20 :
for f being PartFunc of (REAL 3),REAL
for D being set holds
( f is_hpartial_differentiable`12_on D iff ( D c= dom f & ( for u being Element of REAL 3 st u in D holds
f | D is_hpartial_differentiable`12_in u ) ) );
:: deftheorem Def21 defines is_hpartial_differentiable`13_on PDIFF_5:def 21 :
for f being PartFunc of (REAL 3),REAL
for D being set holds
( f is_hpartial_differentiable`13_on D iff ( D c= dom f & ( for u being Element of REAL 3 st u in D holds
f | D is_hpartial_differentiable`13_in u ) ) );
:: deftheorem Def22 defines is_hpartial_differentiable`21_on PDIFF_5:def 22 :
for f being PartFunc of (REAL 3),REAL
for D being set holds
( f is_hpartial_differentiable`21_on D iff ( D c= dom f & ( for u being Element of REAL 3 st u in D holds
f | D is_hpartial_differentiable`21_in u ) ) );
:: deftheorem Def23 defines is_hpartial_differentiable`22_on PDIFF_5:def 23 :
for f being PartFunc of (REAL 3),REAL
for D being set holds
( f is_hpartial_differentiable`22_on D iff ( D c= dom f & ( for u being Element of REAL 3 st u in D holds
f | D is_hpartial_differentiable`22_in u ) ) );
:: deftheorem Def24 defines is_hpartial_differentiable`23_on PDIFF_5:def 24 :
for f being PartFunc of (REAL 3),REAL
for D being set holds
( f is_hpartial_differentiable`23_on D iff ( D c= dom f & ( for u being Element of REAL 3 st u in D holds
f | D is_hpartial_differentiable`23_in u ) ) );
:: deftheorem Def25 defines is_hpartial_differentiable`31_on PDIFF_5:def 25 :
for f being PartFunc of (REAL 3),REAL
for D being set holds
( f is_hpartial_differentiable`31_on D iff ( D c= dom f & ( for u being Element of REAL 3 st u in D holds
f | D is_hpartial_differentiable`31_in u ) ) );
:: deftheorem Def26 defines is_hpartial_differentiable`32_on PDIFF_5:def 26 :
for f being PartFunc of (REAL 3),REAL
for D being set holds
( f is_hpartial_differentiable`32_on D iff ( D c= dom f & ( for u being Element of REAL 3 st u in D holds
f | D is_hpartial_differentiable`32_in u ) ) );
:: deftheorem Def27 defines is_hpartial_differentiable`33_on PDIFF_5:def 27 :
for f being PartFunc of (REAL 3),REAL
for D being set holds
( f is_hpartial_differentiable`33_on D iff ( D c= dom f & ( for u being Element of REAL 3 st u in D holds
f | D is_hpartial_differentiable`33_in u ) ) );
:: deftheorem defines `hpartial11| PDIFF_5:def 28 :
for f being PartFunc of (REAL 3),REAL
for D being set st f is_hpartial_differentiable`11_on D holds
for b3 being PartFunc of (REAL 3),REAL holds
( b3 = f `hpartial11| D iff ( dom b3 = D & ( for u being Element of REAL 3 st u in D holds
b3 . u = hpartdiff11 (f,u) ) ) );
:: deftheorem defines `hpartial12| PDIFF_5:def 29 :
for f being PartFunc of (REAL 3),REAL
for D being set st f is_hpartial_differentiable`12_on D holds
for b3 being PartFunc of (REAL 3),REAL holds
( b3 = f `hpartial12| D iff ( dom b3 = D & ( for u being Element of REAL 3 st u in D holds
b3 . u = hpartdiff12 (f,u) ) ) );
:: deftheorem defines `hpartial13| PDIFF_5:def 30 :
for f being PartFunc of (REAL 3),REAL
for D being set st f is_hpartial_differentiable`13_on D holds
for b3 being PartFunc of (REAL 3),REAL holds
( b3 = f `hpartial13| D iff ( dom b3 = D & ( for u being Element of REAL 3 st u in D holds
b3 . u = hpartdiff13 (f,u) ) ) );
:: deftheorem defines `hpartial21| PDIFF_5:def 31 :
for f being PartFunc of (REAL 3),REAL
for D being set st f is_hpartial_differentiable`21_on D holds
for b3 being PartFunc of (REAL 3),REAL holds
( b3 = f `hpartial21| D iff ( dom b3 = D & ( for u being Element of REAL 3 st u in D holds
b3 . u = hpartdiff21 (f,u) ) ) );
:: deftheorem defines `hpartial22| PDIFF_5:def 32 :
for f being PartFunc of (REAL 3),REAL
for D being set st f is_hpartial_differentiable`22_on D holds
for b3 being PartFunc of (REAL 3),REAL holds
( b3 = f `hpartial22| D iff ( dom b3 = D & ( for u being Element of REAL 3 st u in D holds
b3 . u = hpartdiff22 (f,u) ) ) );
:: deftheorem defines `hpartial23| PDIFF_5:def 33 :
for f being PartFunc of (REAL 3),REAL
for D being set st f is_hpartial_differentiable`23_on D holds
for b3 being PartFunc of (REAL 3),REAL holds
( b3 = f `hpartial23| D iff ( dom b3 = D & ( for u being Element of REAL 3 st u in D holds
b3 . u = hpartdiff23 (f,u) ) ) );
:: deftheorem defines `hpartial31| PDIFF_5:def 34 :
for f being PartFunc of (REAL 3),REAL
for D being set st f is_hpartial_differentiable`31_on D holds
for b3 being PartFunc of (REAL 3),REAL holds
( b3 = f `hpartial31| D iff ( dom b3 = D & ( for u being Element of REAL 3 st u in D holds
b3 . u = hpartdiff31 (f,u) ) ) );
:: deftheorem defines `hpartial32| PDIFF_5:def 35 :
for f being PartFunc of (REAL 3),REAL
for D being set st f is_hpartial_differentiable`32_on D holds
for b3 being PartFunc of (REAL 3),REAL holds
( b3 = f `hpartial32| D iff ( dom b3 = D & ( for u being Element of REAL 3 st u in D holds
b3 . u = hpartdiff32 (f,u) ) ) );
:: deftheorem defines `hpartial33| PDIFF_5:def 36 :
for f being PartFunc of (REAL 3),REAL
for D being set st f is_hpartial_differentiable`33_on D holds
for b3 being PartFunc of (REAL 3),REAL holds
( b3 = f `hpartial33| D iff ( dom b3 = D & ( for u being Element of REAL 3 st u in D holds
b3 . u = hpartdiff33 (f,u) ) ) );
begin
theorem Th19:
theorem Th20:
theorem Th21:
theorem Th22:
theorem Th23:
theorem Th24:
theorem Th25:
theorem Th26:
theorem Th27:
theorem Th28:
theorem Th29:
theorem Th30:
theorem Th31:
theorem Th32:
theorem Th33:
theorem Th34:
theorem Th35:
theorem Th36:
theorem
for
f being
PartFunc of
(REAL 3),
REAL for
u0 being
Element of
REAL 3
for
N being
Neighbourhood of
(proj (1,3)) . u0 st
f is_hpartial_differentiable`11_in u0 &
N c= dom (SVF1 (1,(pdiff1 (f,1)),u0)) holds
for
h being
convergent_to_0 Real_Sequence for
c being
V20()
Real_Sequence st
rng c = {((proj (1,3)) . u0)} &
rng (h + c) c= N holds
(
(h ") (#) (((SVF1 (1,(pdiff1 (f,1)),u0)) /* (h + c)) - ((SVF1 (1,(pdiff1 (f,1)),u0)) /* c)) is
convergent &
hpartdiff11 (
f,
u0)
= lim ((h ") (#) (((SVF1 (1,(pdiff1 (f,1)),u0)) /* (h + c)) - ((SVF1 (1,(pdiff1 (f,1)),u0)) /* c))) )
theorem
for
f being
PartFunc of
(REAL 3),
REAL for
u0 being
Element of
REAL 3
for
N being
Neighbourhood of
(proj (2,3)) . u0 st
f is_hpartial_differentiable`12_in u0 &
N c= dom (SVF1 (2,(pdiff1 (f,1)),u0)) holds
for
h being
convergent_to_0 Real_Sequence for
c being
V20()
Real_Sequence st
rng c = {((proj (2,3)) . u0)} &
rng (h + c) c= N holds
(
(h ") (#) (((SVF1 (2,(pdiff1 (f,1)),u0)) /* (h + c)) - ((SVF1 (2,(pdiff1 (f,1)),u0)) /* c)) is
convergent &
hpartdiff12 (
f,
u0)
= lim ((h ") (#) (((SVF1 (2,(pdiff1 (f,1)),u0)) /* (h + c)) - ((SVF1 (2,(pdiff1 (f,1)),u0)) /* c))) )
theorem
for
f being
PartFunc of
(REAL 3),
REAL for
u0 being
Element of
REAL 3
for
N being
Neighbourhood of
(proj (3,3)) . u0 st
f is_hpartial_differentiable`13_in u0 &
N c= dom (SVF1 (3,(pdiff1 (f,1)),u0)) holds
for
h being
convergent_to_0 Real_Sequence for
c being
V20()
Real_Sequence st
rng c = {((proj (3,3)) . u0)} &
rng (h + c) c= N holds
(
(h ") (#) (((SVF1 (3,(pdiff1 (f,1)),u0)) /* (h + c)) - ((SVF1 (3,(pdiff1 (f,1)),u0)) /* c)) is
convergent &
hpartdiff13 (
f,
u0)
= lim ((h ") (#) (((SVF1 (3,(pdiff1 (f,1)),u0)) /* (h + c)) - ((SVF1 (3,(pdiff1 (f,1)),u0)) /* c))) )
theorem
for
f being
PartFunc of
(REAL 3),
REAL for
u0 being
Element of
REAL 3
for
N being
Neighbourhood of
(proj (1,3)) . u0 st
f is_hpartial_differentiable`21_in u0 &
N c= dom (SVF1 (1,(pdiff1 (f,2)),u0)) holds
for
h being
convergent_to_0 Real_Sequence for
c being
V20()
Real_Sequence st
rng c = {((proj (1,3)) . u0)} &
rng (h + c) c= N holds
(
(h ") (#) (((SVF1 (1,(pdiff1 (f,2)),u0)) /* (h + c)) - ((SVF1 (1,(pdiff1 (f,2)),u0)) /* c)) is
convergent &
hpartdiff21 (
f,
u0)
= lim ((h ") (#) (((SVF1 (1,(pdiff1 (f,2)),u0)) /* (h + c)) - ((SVF1 (1,(pdiff1 (f,2)),u0)) /* c))) )
theorem
for
f being
PartFunc of
(REAL 3),
REAL for
u0 being
Element of
REAL 3
for
N being
Neighbourhood of
(proj (2,3)) . u0 st
f is_hpartial_differentiable`22_in u0 &
N c= dom (SVF1 (2,(pdiff1 (f,2)),u0)) holds
for
h being
convergent_to_0 Real_Sequence for
c being
V20()
Real_Sequence st
rng c = {((proj (2,3)) . u0)} &
rng (h + c) c= N holds
(
(h ") (#) (((SVF1 (2,(pdiff1 (f,2)),u0)) /* (h + c)) - ((SVF1 (2,(pdiff1 (f,2)),u0)) /* c)) is
convergent &
hpartdiff22 (
f,
u0)
= lim ((h ") (#) (((SVF1 (2,(pdiff1 (f,2)),u0)) /* (h + c)) - ((SVF1 (2,(pdiff1 (f,2)),u0)) /* c))) )
theorem
for
f being
PartFunc of
(REAL 3),
REAL for
u0 being
Element of
REAL 3
for
N being
Neighbourhood of
(proj (3,3)) . u0 st
f is_hpartial_differentiable`23_in u0 &
N c= dom (SVF1 (3,(pdiff1 (f,2)),u0)) holds
for
h being
convergent_to_0 Real_Sequence for
c being
V20()
Real_Sequence st
rng c = {((proj (3,3)) . u0)} &
rng (h + c) c= N holds
(
(h ") (#) (((SVF1 (3,(pdiff1 (f,2)),u0)) /* (h + c)) - ((SVF1 (3,(pdiff1 (f,2)),u0)) /* c)) is
convergent &
hpartdiff23 (
f,
u0)
= lim ((h ") (#) (((SVF1 (3,(pdiff1 (f,2)),u0)) /* (h + c)) - ((SVF1 (3,(pdiff1 (f,2)),u0)) /* c))) )
theorem
for
f being
PartFunc of
(REAL 3),
REAL for
u0 being
Element of
REAL 3
for
N being
Neighbourhood of
(proj (1,3)) . u0 st
f is_hpartial_differentiable`31_in u0 &
N c= dom (SVF1 (1,(pdiff1 (f,3)),u0)) holds
for
h being
convergent_to_0 Real_Sequence for
c being
V20()
Real_Sequence st
rng c = {((proj (1,3)) . u0)} &
rng (h + c) c= N holds
(
(h ") (#) (((SVF1 (1,(pdiff1 (f,3)),u0)) /* (h + c)) - ((SVF1 (1,(pdiff1 (f,3)),u0)) /* c)) is
convergent &
hpartdiff31 (
f,
u0)
= lim ((h ") (#) (((SVF1 (1,(pdiff1 (f,3)),u0)) /* (h + c)) - ((SVF1 (1,(pdiff1 (f,3)),u0)) /* c))) )
theorem
for
f being
PartFunc of
(REAL 3),
REAL for
u0 being
Element of
REAL 3
for
N being
Neighbourhood of
(proj (2,3)) . u0 st
f is_hpartial_differentiable`32_in u0 &
N c= dom (SVF1 (2,(pdiff1 (f,3)),u0)) holds
for
h being
convergent_to_0 Real_Sequence for
c being
V20()
Real_Sequence st
rng c = {((proj (2,3)) . u0)} &
rng (h + c) c= N holds
(
(h ") (#) (((SVF1 (2,(pdiff1 (f,3)),u0)) /* (h + c)) - ((SVF1 (2,(pdiff1 (f,3)),u0)) /* c)) is
convergent &
hpartdiff32 (
f,
u0)
= lim ((h ") (#) (((SVF1 (2,(pdiff1 (f,3)),u0)) /* (h + c)) - ((SVF1 (2,(pdiff1 (f,3)),u0)) /* c))) )
theorem
for
f being
PartFunc of
(REAL 3),
REAL for
u0 being
Element of
REAL 3
for
N being
Neighbourhood of
(proj (3,3)) . u0 st
f is_hpartial_differentiable`33_in u0 &
N c= dom (SVF1 (3,(pdiff1 (f,3)),u0)) holds
for
h being
convergent_to_0 Real_Sequence for
c being
V20()
Real_Sequence st
rng c = {((proj (3,3)) . u0)} &
rng (h + c) c= N holds
(
(h ") (#) (((SVF1 (3,(pdiff1 (f,3)),u0)) /* (h + c)) - ((SVF1 (3,(pdiff1 (f,3)),u0)) /* c)) is
convergent &
hpartdiff33 (
f,
u0)
= lim ((h ") (#) (((SVF1 (3,(pdiff1 (f,3)),u0)) /* (h + c)) - ((SVF1 (3,(pdiff1 (f,3)),u0)) /* c))) )
theorem
for
u0 being
Element of
REAL 3
for
f1,
f2 being
PartFunc of
(REAL 3),
REAL st
f1 is_hpartial_differentiable`11_in u0 &
f2 is_hpartial_differentiable`11_in u0 holds
(
(pdiff1 (f1,1)) + (pdiff1 (f2,1)) is_partial_differentiable_in u0,1 &
partdiff (
((pdiff1 (f1,1)) + (pdiff1 (f2,1))),
u0,1)
= (hpartdiff11 (f1,u0)) + (hpartdiff11 (f2,u0)) )
theorem
for
u0 being
Element of
REAL 3
for
f1,
f2 being
PartFunc of
(REAL 3),
REAL st
f1 is_hpartial_differentiable`12_in u0 &
f2 is_hpartial_differentiable`12_in u0 holds
(
(pdiff1 (f1,1)) + (pdiff1 (f2,1)) is_partial_differentiable_in u0,2 &
partdiff (
((pdiff1 (f1,1)) + (pdiff1 (f2,1))),
u0,2)
= (hpartdiff12 (f1,u0)) + (hpartdiff12 (f2,u0)) )
theorem
for
u0 being
Element of
REAL 3
for
f1,
f2 being
PartFunc of
(REAL 3),
REAL st
f1 is_hpartial_differentiable`13_in u0 &
f2 is_hpartial_differentiable`13_in u0 holds
(
(pdiff1 (f1,1)) + (pdiff1 (f2,1)) is_partial_differentiable_in u0,3 &
partdiff (
((pdiff1 (f1,1)) + (pdiff1 (f2,1))),
u0,3)
= (hpartdiff13 (f1,u0)) + (hpartdiff13 (f2,u0)) )
theorem
for
u0 being
Element of
REAL 3
for
f1,
f2 being
PartFunc of
(REAL 3),
REAL st
f1 is_hpartial_differentiable`21_in u0 &
f2 is_hpartial_differentiable`21_in u0 holds
(
(pdiff1 (f1,2)) + (pdiff1 (f2,2)) is_partial_differentiable_in u0,1 &
partdiff (
((pdiff1 (f1,2)) + (pdiff1 (f2,2))),
u0,1)
= (hpartdiff21 (f1,u0)) + (hpartdiff21 (f2,u0)) )
theorem
for
u0 being
Element of
REAL 3
for
f1,
f2 being
PartFunc of
(REAL 3),
REAL st
f1 is_hpartial_differentiable`22_in u0 &
f2 is_hpartial_differentiable`22_in u0 holds
(
(pdiff1 (f1,2)) + (pdiff1 (f2,2)) is_partial_differentiable_in u0,2 &
partdiff (
((pdiff1 (f1,2)) + (pdiff1 (f2,2))),
u0,2)
= (hpartdiff22 (f1,u0)) + (hpartdiff22 (f2,u0)) )
theorem
for
u0 being
Element of
REAL 3
for
f1,
f2 being
PartFunc of
(REAL 3),
REAL st
f1 is_hpartial_differentiable`23_in u0 &
f2 is_hpartial_differentiable`23_in u0 holds
(
(pdiff1 (f1,2)) + (pdiff1 (f2,2)) is_partial_differentiable_in u0,3 &
partdiff (
((pdiff1 (f1,2)) + (pdiff1 (f2,2))),
u0,3)
= (hpartdiff23 (f1,u0)) + (hpartdiff23 (f2,u0)) )
theorem
for
u0 being
Element of
REAL 3
for
f1,
f2 being
PartFunc of
(REAL 3),
REAL st
f1 is_hpartial_differentiable`11_in u0 &
f2 is_hpartial_differentiable`11_in u0 holds
(
(pdiff1 (f1,1)) - (pdiff1 (f2,1)) is_partial_differentiable_in u0,1 &
partdiff (
((pdiff1 (f1,1)) - (pdiff1 (f2,1))),
u0,1)
= (hpartdiff11 (f1,u0)) - (hpartdiff11 (f2,u0)) )
theorem
for
u0 being
Element of
REAL 3
for
f1,
f2 being
PartFunc of
(REAL 3),
REAL st
f1 is_hpartial_differentiable`12_in u0 &
f2 is_hpartial_differentiable`12_in u0 holds
(
(pdiff1 (f1,1)) - (pdiff1 (f2,1)) is_partial_differentiable_in u0,2 &
partdiff (
((pdiff1 (f1,1)) - (pdiff1 (f2,1))),
u0,2)
= (hpartdiff12 (f1,u0)) - (hpartdiff12 (f2,u0)) )
theorem
for
u0 being
Element of
REAL 3
for
f1,
f2 being
PartFunc of
(REAL 3),
REAL st
f1 is_hpartial_differentiable`13_in u0 &
f2 is_hpartial_differentiable`13_in u0 holds
(
(pdiff1 (f1,1)) - (pdiff1 (f2,1)) is_partial_differentiable_in u0,3 &
partdiff (
((pdiff1 (f1,1)) - (pdiff1 (f2,1))),
u0,3)
= (hpartdiff13 (f1,u0)) - (hpartdiff13 (f2,u0)) )
theorem
for
u0 being
Element of
REAL 3
for
f1,
f2 being
PartFunc of
(REAL 3),
REAL st
f1 is_hpartial_differentiable`21_in u0 &
f2 is_hpartial_differentiable`21_in u0 holds
(
(pdiff1 (f1,2)) - (pdiff1 (f2,2)) is_partial_differentiable_in u0,1 &
partdiff (
((pdiff1 (f1,2)) - (pdiff1 (f2,2))),
u0,1)
= (hpartdiff21 (f1,u0)) - (hpartdiff21 (f2,u0)) )
theorem
for
u0 being
Element of
REAL 3
for
f1,
f2 being
PartFunc of
(REAL 3),
REAL st
f1 is_hpartial_differentiable`22_in u0 &
f2 is_hpartial_differentiable`22_in u0 holds
(
(pdiff1 (f1,2)) - (pdiff1 (f2,2)) is_partial_differentiable_in u0,2 &
partdiff (
((pdiff1 (f1,2)) - (pdiff1 (f2,2))),
u0,2)
= (hpartdiff22 (f1,u0)) - (hpartdiff22 (f2,u0)) )
theorem
for
u0 being
Element of
REAL 3
for
f1,
f2 being
PartFunc of
(REAL 3),
REAL st
f1 is_hpartial_differentiable`23_in u0 &
f2 is_hpartial_differentiable`23_in u0 holds
(
(pdiff1 (f1,2)) - (pdiff1 (f2,2)) is_partial_differentiable_in u0,3 &
partdiff (
((pdiff1 (f1,2)) - (pdiff1 (f2,2))),
u0,3)
= (hpartdiff23 (f1,u0)) - (hpartdiff23 (f2,u0)) )
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem