:: Classical and Non--classical Pasch Configurations in Ordered Affine Planes
:: by Henryk Oryszczyszyn, Krzysztof Pra\.zmowski and
::
:: Received May 16, 1990
:: Copyright (c) 1990-2011 Association of Mizar Users


begin

definition
let OAS be OAffinSpace;
attr OAS is satisfying_Int_Par_Pasch means :: PASCH:def 1
for a, b, c, d, p being Element of OAS st not LIN p,b,c & Mid b,p,a & LIN p,c,d & b,c '||' d,a holds
Mid c,p,d;
end;

:: deftheorem defines satisfying_Int_Par_Pasch PASCH:def 1 :
for OAS being OAffinSpace holds
( OAS is satisfying_Int_Par_Pasch iff for a, b, c, d, p being Element of OAS st not LIN p,b,c & Mid b,p,a & LIN p,c,d & b,c '||' d,a holds
Mid c,p,d );

definition
let OAS be OAffinSpace;
attr OAS is satisfying_Ext_Par_Pasch means :: PASCH:def 2
for a, b, c, d, p being Element of OAS st Mid p,b,c & LIN p,a,d & a,b '||' c,d & not LIN p,a,b holds
Mid p,a,d;
end;

:: deftheorem defines satisfying_Ext_Par_Pasch PASCH:def 2 :
for OAS being OAffinSpace holds
( OAS is satisfying_Ext_Par_Pasch iff for a, b, c, d, p being Element of OAS st Mid p,b,c & LIN p,a,d & a,b '||' c,d & not LIN p,a,b holds
Mid p,a,d );

definition
let OAS be OAffinSpace;
attr OAS is satisfying_Gen_Par_Pasch means :: PASCH:def 3
for a, b, c, a9, b9, c9 being Element of OAS st not LIN a,b,a9 & a,a9 '||' b,b9 & a,a9 '||' c,c9 & Mid a,b,c & LIN a9,b9,c9 holds
Mid a9,b9,c9;
end;

:: deftheorem defines satisfying_Gen_Par_Pasch PASCH:def 3 :
for OAS being OAffinSpace holds
( OAS is satisfying_Gen_Par_Pasch iff for a, b, c, a9, b9, c9 being Element of OAS st not LIN a,b,a9 & a,a9 '||' b,b9 & a,a9 '||' c,c9 & Mid a,b,c & LIN a9,b9,c9 holds
Mid a9,b9,c9 );

definition
let OAS be OAffinSpace;
attr OAS is satisfying_Ext_Bet_Pasch means :: PASCH:def 4
for a, b, c, d, x, y being Element of OAS st Mid a,b,d & Mid b,x,c & not LIN a,b,c holds
ex y being Element of OAS st
( Mid a,y,c & Mid y,x,d );
end;

:: deftheorem defines satisfying_Ext_Bet_Pasch PASCH:def 4 :
for OAS being OAffinSpace holds
( OAS is satisfying_Ext_Bet_Pasch iff for a, b, c, d, x, y being Element of OAS st Mid a,b,d & Mid b,x,c & not LIN a,b,c holds
ex y being Element of OAS st
( Mid a,y,c & Mid y,x,d ) );

definition
let OAS be OAffinSpace;
attr OAS is satisfying_Int_Bet_Pasch means :: PASCH:def 5
for a, b, c, d, x, y being Element of OAS st Mid a,b,d & Mid a,x,c & not LIN a,b,c holds
ex y being Element of OAS st
( Mid b,y,c & Mid x,y,d );
end;

:: deftheorem defines satisfying_Int_Bet_Pasch PASCH:def 5 :
for OAS being OAffinSpace holds
( OAS is satisfying_Int_Bet_Pasch iff for a, b, c, d, x, y being Element of OAS st Mid a,b,d & Mid a,x,c & not LIN a,b,c holds
ex y being Element of OAS st
( Mid b,y,c & Mid x,y,d ) );

definition
let OAS be OAffinSpace;
attr OAS is Fanoian means :: PASCH:def 6
for a, b, c, d being Element of OAS st a,b // c,d & a,c // b,d & not LIN a,b,c holds
ex x being Element of OAS st
( Mid a,x,d & Mid b,x,c );
end;

:: deftheorem defines Fanoian PASCH:def 6 :
for OAS being OAffinSpace holds
( OAS is Fanoian iff for a, b, c, d being Element of OAS st a,b // c,d & a,c // b,d & not LIN a,b,c holds
ex x being Element of OAS st
( Mid a,x,d & Mid b,x,c ) );

theorem :: PASCH:1
canceled;

theorem :: PASCH:2
canceled;

theorem :: PASCH:3
canceled;

theorem :: PASCH:4
canceled;

theorem :: PASCH:5
canceled;

theorem :: PASCH:6
canceled;

theorem Th7: :: PASCH:7
for OAS being OAffinSpace
for b, p, c, a being Element of OAS st b,p // p,c & p <> c & b <> p holds
ex d being Element of OAS st
( a,p // p,d & a,b '||' c,d & c <> d & p <> d )
proof end;

theorem Th8: :: PASCH:8
for OAS being OAffinSpace
for p, b, c, a being Element of OAS st p,b // p,c & p <> c & b <> p holds
ex d being Element of OAS st
( p,a // p,d & a,b '||' c,d & c <> d )
proof end;

theorem :: PASCH:9
for OAS being OAffinSpace
for p, b, c, a being Element of OAS st p,b '||' p,c & p <> b holds
ex d being Element of OAS st
( p,a '||' p,d & a,b '||' c,d )
proof end;

theorem :: PASCH:10
canceled;

theorem Th11: :: PASCH:11
for OAS being OAffinSpace
for p, a, b, c, d1, d2 being Element of OAS st not LIN p,a,b & LIN p,b,c & LIN p,a,d1 & LIN p,a,d2 & a,b '||' c,d1 & a,b '||' c,d2 holds
d1 = d2
proof end;

theorem Th12: :: PASCH:12
for OAS being OAffinSpace
for a, b, c, d1, d2 being Element of OAS st not LIN a,b,c & a,b '||' c,d1 & a,b '||' c,d2 & a,c '||' b,d1 & a,c '||' b,d2 holds
d1 = d2
proof end;

theorem Th13: :: PASCH:13
for OAS being OAffinSpace
for p, b, c, a, d being Element of OAS st not LIN p,b,c & Mid b,p,a & LIN p,c,d & b,c '||' d,a holds
Mid c,p,d
proof end;

theorem :: PASCH:14
for OAS being OAffinSpace holds OAS is satisfying_Int_Par_Pasch
proof end;

theorem Th15: :: PASCH:15
for OAS being OAffinSpace
for p, b, c, a, d being Element of OAS st Mid p,b,c & LIN p,a,d & a,b '||' c,d & not LIN p,a,b holds
Mid p,a,d
proof end;

theorem :: PASCH:16
for OAS being OAffinSpace holds OAS is satisfying_Ext_Par_Pasch
proof end;

theorem Th17: :: PASCH:17
for OAS being OAffinSpace
for a, b, a9, b9, c, c9 being Element of OAS st not LIN a,b,a9 & a,a9 '||' b,b9 & a,a9 '||' c,c9 & Mid a,b,c & LIN a9,b9,c9 holds
Mid a9,b9,c9
proof end;

theorem :: PASCH:18
for OAS being OAffinSpace holds OAS is satisfying_Gen_Par_Pasch
proof end;

theorem :: PASCH:19
for OAS being OAffinSpace
for p, a, b, a9, b9 being Element of OAS st not LIN p,a,b & a,p // p,a9 & b,p // p,b9 & a,b '||' a9,b9 holds
a,b // b9,a9
proof end;

theorem :: PASCH:20
for OAS being OAffinSpace
for p, a, a9, b, b9 being Element of OAS st not LIN p,a,a9 & p,a // p,b & p,a9 // p,b9 & a,a9 '||' b,b9 holds
a,a9 // b,b9
proof end;

theorem Th21: :: PASCH:21
for OAS being OAffinSpace
for p, a, b, c being Element of OAS st not LIN p,a,b & p,a '||' b,c & p,b '||' a,c holds
( p,a // b,c & p,b // a,c )
proof end;

theorem Th22: :: PASCH:22
for OAS being OAffinSpace
for p, c, b, d, a being Element of OAS st Mid p,c,b & c,d // b,a & p,d // p,a & not LIN p,a,b & p <> c holds
Mid p,d,a
proof end;

theorem Th23: :: PASCH:23
for OAS being OAffinSpace
for p, d, a, c, b being Element of OAS st Mid p,d,a & c,d // b,a & p,c // p,b & not LIN p,a,b & p <> c holds
Mid p,c,b
proof end;

theorem Th24: :: PASCH:24
for OAS being OAffinSpace
for p, a, b, c, d being Element of OAS st not LIN p,a,b & p,b // p,c & b,a // c,d & p <> d holds
not Mid a,p,d
proof end;

theorem Th25: :: PASCH:25
for OAS being OAffinSpace
for p, b, c, a being Element of OAS st p,b // p,c & b <> p holds
ex x being Element of OAS st
( p,a // p,x & b,a // c,x )
proof end;

theorem Th26: :: PASCH:26
for OAS being OAffinSpace
for p, c, b, a being Element of OAS st Mid p,c,b holds
ex x being Element of OAS st
( Mid p,x,a & b,a // c,x )
proof end;

theorem Th27: :: PASCH:27
for OAS being OAffinSpace
for p, b, c, a being Element of OAS st p <> b & Mid p,b,c holds
ex x being Element of OAS st
( Mid p,a,x & b,a // c,x )
proof end;

theorem Th28: :: PASCH:28
for OAS being OAffinSpace
for p, a, b, c being Element of OAS st not LIN p,a,b & Mid p,c,b holds
ex x being Element of OAS st
( Mid p,x,a & a,b // x,c )
proof end;

theorem :: PASCH:29
for OAS being OAffinSpace
for a, b, c being Element of OAS ex x being Element of OAS st
( a,x // b,c & a,b // x,c )
proof end;

theorem Th30: :: PASCH:30
for OAS being OAffinSpace
for a, b, c, d being Element of OAS st a,b // c,d & not LIN a,b,c holds
ex x being Element of OAS st
( Mid a,x,d & Mid b,x,c )
proof end;

theorem :: PASCH:31
canceled;

theorem :: PASCH:32
for OAS being OAffinSpace holds OAS is Fanoian
proof end;

theorem :: PASCH:33
for OAS being OAffinSpace
for a, b, c, d being Element of OAS st a,b '||' c,d & a,c '||' b,d & not LIN a,b,c holds
ex x being Element of OAS st
( LIN x,a,d & LIN x,b,c )
proof end;

theorem :: PASCH:34
for OAS being OAffinSpace
for a, b, c, d, p being Element of OAS st a,b '||' c,d & not LIN a,b,c & LIN p,a,d & LIN p,b,c holds
not LIN p,a,b
proof end;

theorem Th35: :: PASCH:35
for OAS being OAffinSpace
for a, b, d, x, c being Element of OAS st Mid a,b,d & Mid b,x,c & not LIN a,b,c holds
ex y being Element of OAS st
( Mid a,y,c & Mid y,x,d )
proof end;

theorem :: PASCH:36
for OAS being OAffinSpace holds OAS is satisfying_Ext_Bet_Pasch
proof end;

theorem Th37: :: PASCH:37
for OAS being OAffinSpace
for a, b, d, x, c being Element of OAS st Mid a,b,d & Mid a,x,c & not LIN a,b,c holds
ex y being Element of OAS st
( Mid b,y,c & Mid x,y,d )
proof end;

theorem :: PASCH:38
for OAS being OAffinSpace holds OAS is satisfying_Int_Bet_Pasch
proof end;

theorem :: PASCH:39
for OAS being OAffinSpace
for p, a, b, p9, a9, b9 being Element of OAS st Mid p,a,b & p,a // p9,a9 & not LIN p,a,p9 & LIN p9,a9,b9 & p,p9 // a,a9 & p,p9 // b,b9 holds
Mid p9,a9,b9
proof end;