begin
theorem
canceled;
theorem
canceled;
theorem
canceled;
theorem
canceled;
theorem
canceled;
theorem Th6:
theorem Th7:
theorem Th8:
theorem Th9:
begin
theorem
canceled;
theorem
canceled;
theorem
canceled;
theorem
canceled;
theorem Th14:
theorem
canceled;
theorem
canceled;
theorem
canceled;
theorem Th18:
theorem Th19:
theorem Th20:
theorem Th21:
theorem Th22:
theorem Th23:
theorem Th24:
theorem Th25:
theorem
theorem Th27:
theorem Th28:
theorem Th29:
theorem Th30:
theorem Th31:
theorem Th32:
begin
:: deftheorem Def1 defines S_Drop JORDAN4:def 1 :
for n being Element of NAT
for f being FinSequence holds
( ( n mod ((len f) -' 1) <> 0 implies S_Drop (n,f) = n mod ((len f) -' 1) ) & ( not n mod ((len f) -' 1) <> 0 implies S_Drop (n,f) = (len f) -' 1 ) );
theorem Th33:
theorem Th34:
theorem Th35:
:: deftheorem Def2 defines is_a_part>_of JORDAN4:def 2 :
for f being non constant standard special_circular_sequence
for g being FinSequence of (TOP-REAL 2)
for i1, i2 being Element of NAT holds
( g is_a_part>_of f,i1,i2 iff ( 1 <= i1 & i1 + 1 <= len f & 1 <= i2 & i2 + 1 <= len f & g . (len g) = f . i2 & 1 <= len g & len g < len f & ( for i being Nat st 1 <= i & i <= len g holds
g . i = f . (S_Drop (((i1 + i) -' 1),f)) ) ) );
:: deftheorem Def3 defines is_a_part<_of JORDAN4:def 3 :
for f being non constant standard special_circular_sequence
for g being FinSequence of (TOP-REAL 2)
for i1, i2 being Element of NAT holds
( g is_a_part<_of f,i1,i2 iff ( 1 <= i1 & i1 + 1 <= len f & 1 <= i2 & i2 + 1 <= len f & g . (len g) = f . i2 & 1 <= len g & len g < len f & ( for i being Nat st 1 <= i & i <= len g holds
g . i = f . (S_Drop ((((len f) + i1) -' i),f)) ) ) );
:: deftheorem Def4 defines is_a_part_of JORDAN4:def 4 :
for f being non constant standard special_circular_sequence
for g being FinSequence of (TOP-REAL 2)
for i1, i2 being Element of NAT holds
( g is_a_part_of f,i1,i2 iff ( g is_a_part>_of f,i1,i2 or g is_a_part<_of f,i1,i2 ) );
theorem
theorem Th37:
theorem Th38:
theorem Th39:
theorem Th40:
theorem Th41:
theorem Th42:
theorem Th43:
theorem Th44:
theorem Th45:
theorem Th46:
theorem Th47:
theorem Th48:
theorem Th49:
theorem Th50:
theorem Th51:
theorem Th52:
theorem Th53:
theorem Th54:
theorem Th55:
theorem Th56:
Lm1:
for f being non constant standard special_circular_sequence
for g being FinSequence of (TOP-REAL 2)
for i1, i2 being Element of NAT st g is_a_part>_of f,i1,i2 & i1 > i2 holds
L~ g is_S-P_arc_joining f /. i1,f /. i2
theorem
theorem Th58:
theorem Th59:
theorem Th60:
theorem
theorem Th62:
for
f being non
constant standard special_circular_sequence for
i1,
i2 being
Element of
NAT st 1
<= i1 &
i1 + 1
<= len f & 1
<= i2 &
i2 + 1
<= len f &
i1 <> i2 holds
ex
g1,
g2 being
FinSequence of
(TOP-REAL 2) st
(
g1 is_a_part_of f,
i1,
i2 &
g2 is_a_part_of f,
i1,
i2 &
(L~ g1) /\ (L~ g2) = {(f . i1),(f . i2)} &
(L~ g1) \/ (L~ g2) = L~ f &
L~ g1 is_S-P_arc_joining f /. i1,
f /. i2 &
L~ g2 is_S-P_arc_joining f /. i1,
f /. i2 & ( for
g being
FinSequence of
(TOP-REAL 2) holds
( not
g is_a_part_of f,
i1,
i2 or
g = g1 or
g = g2 ) ) )
theorem
theorem Th64:
theorem Th65:
theorem Th66:
theorem Th67:
definition
let f be non
constant standard special_circular_sequence;
let i1,
i2 be
Element of
NAT ;
assume that A1:
1
<= i1
and A2:
i1 + 1
<= len f
and A3:
1
<= i2
and A4:
i2 + 1
<= len f
and A5:
i1 <> i2
;
func Lower (
f,
i1,
i2)
-> FinSequence of
(TOP-REAL 2) means
(
it is_a_part_of f,
i1,
i2 & ( (
(f /. (i1 + 1)) `1 < (f /. i1) `1 or
(f /. (i1 + 1)) `2 < (f /. i1) `2 ) implies
it . 2
= f . (i1 + 1) ) & (
(f /. (i1 + 1)) `1 >= (f /. i1) `1 &
(f /. (i1 + 1)) `2 >= (f /. i1) `2 implies
it . 2
= f . (S_Drop ((i1 -' 1),f)) ) );
correctness
existence
ex b1 being FinSequence of (TOP-REAL 2) st
( b1 is_a_part_of f,i1,i2 & ( ( (f /. (i1 + 1)) `1 < (f /. i1) `1 or (f /. (i1 + 1)) `2 < (f /. i1) `2 ) implies b1 . 2 = f . (i1 + 1) ) & ( (f /. (i1 + 1)) `1 >= (f /. i1) `1 & (f /. (i1 + 1)) `2 >= (f /. i1) `2 implies b1 . 2 = f . (S_Drop ((i1 -' 1),f)) ) );
uniqueness
for b1, b2 being FinSequence of (TOP-REAL 2) st b1 is_a_part_of f,i1,i2 & ( ( (f /. (i1 + 1)) `1 < (f /. i1) `1 or (f /. (i1 + 1)) `2 < (f /. i1) `2 ) implies b1 . 2 = f . (i1 + 1) ) & ( (f /. (i1 + 1)) `1 >= (f /. i1) `1 & (f /. (i1 + 1)) `2 >= (f /. i1) `2 implies b1 . 2 = f . (S_Drop ((i1 -' 1),f)) ) & b2 is_a_part_of f,i1,i2 & ( ( (f /. (i1 + 1)) `1 < (f /. i1) `1 or (f /. (i1 + 1)) `2 < (f /. i1) `2 ) implies b2 . 2 = f . (i1 + 1) ) & ( (f /. (i1 + 1)) `1 >= (f /. i1) `1 & (f /. (i1 + 1)) `2 >= (f /. i1) `2 implies b2 . 2 = f . (S_Drop ((i1 -' 1),f)) ) holds
b1 = b2;
func Upper (
f,
i1,
i2)
-> FinSequence of
(TOP-REAL 2) means
(
it is_a_part_of f,
i1,
i2 & ( (
(f /. (i1 + 1)) `1 > (f /. i1) `1 or
(f /. (i1 + 1)) `2 > (f /. i1) `2 ) implies
it . 2
= f . (i1 + 1) ) & (
(f /. (i1 + 1)) `1 <= (f /. i1) `1 &
(f /. (i1 + 1)) `2 <= (f /. i1) `2 implies
it . 2
= f . (S_Drop ((i1 -' 1),f)) ) );
correctness
existence
ex b1 being FinSequence of (TOP-REAL 2) st
( b1 is_a_part_of f,i1,i2 & ( ( (f /. (i1 + 1)) `1 > (f /. i1) `1 or (f /. (i1 + 1)) `2 > (f /. i1) `2 ) implies b1 . 2 = f . (i1 + 1) ) & ( (f /. (i1 + 1)) `1 <= (f /. i1) `1 & (f /. (i1 + 1)) `2 <= (f /. i1) `2 implies b1 . 2 = f . (S_Drop ((i1 -' 1),f)) ) );
uniqueness
for b1, b2 being FinSequence of (TOP-REAL 2) st b1 is_a_part_of f,i1,i2 & ( ( (f /. (i1 + 1)) `1 > (f /. i1) `1 or (f /. (i1 + 1)) `2 > (f /. i1) `2 ) implies b1 . 2 = f . (i1 + 1) ) & ( (f /. (i1 + 1)) `1 <= (f /. i1) `1 & (f /. (i1 + 1)) `2 <= (f /. i1) `2 implies b1 . 2 = f . (S_Drop ((i1 -' 1),f)) ) & b2 is_a_part_of f,i1,i2 & ( ( (f /. (i1 + 1)) `1 > (f /. i1) `1 or (f /. (i1 + 1)) `2 > (f /. i1) `2 ) implies b2 . 2 = f . (i1 + 1) ) & ( (f /. (i1 + 1)) `1 <= (f /. i1) `1 & (f /. (i1 + 1)) `2 <= (f /. i1) `2 implies b2 . 2 = f . (S_Drop ((i1 -' 1),f)) ) holds
b1 = b2;
end;
:: deftheorem defines Lower JORDAN4:def 5 :
for f being non constant standard special_circular_sequence
for i1, i2 being Element of NAT st 1 <= i1 & i1 + 1 <= len f & 1 <= i2 & i2 + 1 <= len f & i1 <> i2 holds
for b4 being FinSequence of (TOP-REAL 2) holds
( b4 = Lower (f,i1,i2) iff ( b4 is_a_part_of f,i1,i2 & ( ( (f /. (i1 + 1)) `1 < (f /. i1) `1 or (f /. (i1 + 1)) `2 < (f /. i1) `2 ) implies b4 . 2 = f . (i1 + 1) ) & ( (f /. (i1 + 1)) `1 >= (f /. i1) `1 & (f /. (i1 + 1)) `2 >= (f /. i1) `2 implies b4 . 2 = f . (S_Drop ((i1 -' 1),f)) ) ) );
:: deftheorem defines Upper JORDAN4:def 6 :
for f being non constant standard special_circular_sequence
for i1, i2 being Element of NAT st 1 <= i1 & i1 + 1 <= len f & 1 <= i2 & i2 + 1 <= len f & i1 <> i2 holds
for b4 being FinSequence of (TOP-REAL 2) holds
( b4 = Upper (f,i1,i2) iff ( b4 is_a_part_of f,i1,i2 & ( ( (f /. (i1 + 1)) `1 > (f /. i1) `1 or (f /. (i1 + 1)) `2 > (f /. i1) `2 ) implies b4 . 2 = f . (i1 + 1) ) & ( (f /. (i1 + 1)) `1 <= (f /. i1) `1 & (f /. (i1 + 1)) `2 <= (f /. i1) `2 implies b4 . 2 = f . (S_Drop ((i1 -' 1),f)) ) ) );