begin
theorem Th1:
Lm1:
for p being Element of REAL 3
for r being real number holds r * p = |[(r * (p . 1)),(r * (p . 2)),(r * (p . 3))]|
Lm2:
for p1, p2 being Element of REAL 3 holds p1 + p2 = |[((p1 . 1) + (p2 . 1)),((p1 . 2) + (p2 . 2)),((p1 . 3) + (p2 . 3))]|
Lm3:
for p being Element of REAL 3 holds
( (- p) . 1 = - (p . 1) & (- p) . 2 = - (p . 2) & (- p) . 3 = - (p . 3) )
theorem
Lm4:
for p1, p2 being Element of REAL 3 holds p1 - p2 = |[((p1 . 1) - (p2 . 1)),((p1 . 2) - (p2 . 2)),((p1 . 3) - (p2 . 3))]|
Lm5:
for p1, p2 being Element of REAL 3 holds |(p1,p2)| = (((p1 . 1) * (p2 . 1)) + ((p1 . 2) * (p2 . 2))) + ((p1 . 3) * (p2 . 3))
Lm6:
for r, x, y, z being Element of REAL holds r * |[x,y,z]| = |[(r * x),(r * y),(r * z)]|
Lm7:
for p1, p2 being Element of REAL 3 holds p1 + (- p2) = |[((p1 . 1) - (p2 . 1)),((p1 . 2) - (p2 . 2)),((p1 . 3) - (p2 . 3))]|
Lm8:
for x1, x2, x3, y1, y2, y3 being Element of REAL holds |[x1,x2,x3]| + |[y1,y2,y3]| = |[(x1 + y1),(x2 + y2),(x3 + y3)]|
Lm9:
for p1, p2 being Element of REAL 3 holds |(p1,p2)| = (((p1 . 1) * (p2 . 1)) + ((p1 . 2) * (p2 . 2))) + ((p1 . 3) * (p2 . 3))
Lm10:
for r being Element of REAL
for p1, p2 being Element of REAL 3 holds |((r * p1),p2)| = r * |(p1,p2)|
Lm11:
for p1, p2, q1, q2 being Element of REAL 3 holds (p1 + p2) + (q1 + q2) = (p1 + q1) + (p2 + q2)
Lm12:
for p1, p2, q1, q2 being Element of REAL 3 holds (p1 + p2) - (q1 + q2) = (p1 - q1) + (p2 - q2)
Lm13:
for x1, x2, x3, y1, y2, y3 being Element of REAL holds |[x1,x2,x3]| - |[y1,y2,y3]| = |[(x1 - y1),(x2 - y2),(x3 - y3)]|
definition
func <e1> -> Element of
REAL 3
equals
|[1,0,0]|;
coherence
|[1,0,0]| is Element of REAL 3
;
func <e2> -> Element of
REAL 3
equals
|[0,1,0]|;
coherence
|[0,1,0]| is Element of REAL 3
;
func <e3> -> Element of
REAL 3
equals
|[0,0,1]|;
coherence
|[0,0,1]| is Element of REAL 3
;
end;
:: deftheorem defines <e1> EUCLID_8:def 1 :
<e1> = |[1,0,0]|;
:: deftheorem defines <e2> EUCLID_8:def 2 :
<e2> = |[0,1,0]|;
:: deftheorem defines <e3> EUCLID_8:def 3 :
<e3> = |[0,0,1]|;
Lm14:
for x, y, z being Element of REAL
for p being Element of REAL 3 st p = |[x,y,z]| holds
|(p,p)| = ((x ^2) + (y ^2)) + (z ^2)
:: deftheorem defines <X> EUCLID_8:def 4 :
for p1, p2 being Element of REAL 3 holds p1 <X> p2 = |[(((p1 . 2) * (p2 . 3)) - ((p1 . 3) * (p2 . 2))),(((p1 . 3) * (p2 . 1)) - ((p1 . 1) * (p2 . 3))),(((p1 . 1) * (p2 . 2)) - ((p1 . 2) * (p2 . 1)))]|;
Lm15:
for x1, x2, x3, y1, y2, y3 being Element of REAL holds |[x1,x2,x3]| <X> |[y1,y2,y3]| = |[((x2 * y3) - (x3 * y2)),((x3 * y1) - (x1 * y3)),((x1 * y2) - (x2 * y1))]|
Lm16:
for r being Element of REAL
for p1, p2 being Element of REAL 3 holds
( (r * p1) <X> p2 = r * (p1 <X> p2) & (r * p1) <X> p2 = p1 <X> (r * p2) )
theorem
begin
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem Th25:
theorem Th26:
theorem Th27:
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem Th38:
theorem Th39:
theorem Th40:
theorem
theorem
theorem
theorem Th44:
theorem
theorem
theorem
definition
let f1,
f2,
f3 be
PartFunc of
REAL,
REAL;
func VFunc (
f1,
f2,
f3)
-> Function of
REAL,
(REAL 3) means :
Def5:
for
t being
Real holds
it . t = |[(f1 . t),(f2 . t),(f3 . t)]|;
existence
ex b1 being Function of REAL,(REAL 3) st
for t being Real holds b1 . t = |[(f1 . t),(f2 . t),(f3 . t)]|
uniqueness
for b1, b2 being Function of REAL,(REAL 3) st ( for t being Real holds b1 . t = |[(f1 . t),(f2 . t),(f3 . t)]| ) & ( for t being Real holds b2 . t = |[(f1 . t),(f2 . t),(f3 . t)]| ) holds
b1 = b2
end;
:: deftheorem Def5 defines VFunc EUCLID_8:def 5 :
for f1, f2, f3 being PartFunc of REAL,REAL
for b4 being Function of REAL,(REAL 3) holds
( b4 = VFunc (f1,f2,f3) iff for t being Real holds b4 . t = |[(f1 . t),(f2 . t),(f3 . t)]| );
theorem
theorem Th49:
theorem Th50:
theorem Th51:
theorem
theorem Th53:
theorem
theorem Th55:
theorem
for
p,
q being
Element of
REAL 3
for
f1,
f2,
f3,
g1,
g2,
g3 being
PartFunc of
REAL,
REAL for
t1,
t2 being
Real st
p = (VFunc (f1,f2,f3)) . t1 &
q = (VFunc (g1,g2,g3)) . t2 &
p = q holds
(
f1 . t1 = g1 . t2 &
f2 . t1 = g2 . t2 &
f3 . t1 = g3 . t2 )
theorem
for
f1,
g1,
f2,
g2,
f3,
g3 being
PartFunc of
REAL,
REAL for
t1,
t2 being
Real st
f1 . t1 = g1 . t2 &
f2 . t1 = g2 . t2 &
f3 . t1 = g3 . t2 holds
(VFunc (f1,f2,f3)) . t1 = (VFunc (g1,g2,g3)) . t2
theorem Th58:
theorem Th59:
theorem Th60:
theorem Th61:
theorem Th62:
theorem
theorem Th64:
theorem Th65:
theorem
theorem
theorem Th68:
theorem
theorem
theorem
theorem
theorem
theorem Th74:
theorem Th75:
theorem
theorem Th77:
theorem Th78:
theorem Th79:
theorem
theorem
theorem
theorem Th83:
theorem Th84:
for
x1,
x2,
x3,
y1,
y2,
y3 being
Element of
REAL holds
|[x1,x2,x3]| <X> |[y1,y2,y3]| = |[((x2 * y3) - (x3 * y2)),((x3 * y1) - (x1 * y3)),((x1 * y2) - (x2 * y1))]|
theorem
theorem Th86:
theorem Th87:
theorem
theorem
:: deftheorem defines |{ EUCLID_8:def 6 :
for p1, p2, p3 being Element of REAL 3 holds |{p1,p2,p3}| = |(p1,(p2 <X> p3))|;
theorem
theorem
theorem
theorem Th93:
theorem
theorem
begin
definition
let f1,
f2,
f3 be
PartFunc of
REAL,
REAL;
let t0 be
Real;
func VFuncdiff (
f1,
f2,
f3,
t0)
-> Element of
REAL 3
equals
|[(diff (f1,t0)),(diff (f2,t0)),(diff (f3,t0))]|;
coherence
|[(diff (f1,t0)),(diff (f2,t0)),(diff (f3,t0))]| is Element of REAL 3
;
end;
:: deftheorem defines VFuncdiff EUCLID_8:def 7 :
for f1, f2, f3 being PartFunc of REAL,REAL
for t0 being Real holds VFuncdiff (f1,f2,f3,t0) = |[(diff (f1,t0)),(diff (f2,t0)),(diff (f3,t0))]|;
theorem
theorem Th97:
for
f1,
f2,
f3,
g1,
g2,
g3 being
PartFunc of
REAL,
REAL for
t0 being
Real st
f1 is_differentiable_in t0 &
f2 is_differentiable_in t0 &
f3 is_differentiable_in t0 &
g1 is_differentiable_in t0 &
g2 is_differentiable_in t0 &
g3 is_differentiable_in t0 holds
VFuncdiff (
(f1 + g1),
(f2 + g2),
(f3 + g3),
t0)
= (VFuncdiff (f1,f2,f3,t0)) + (VFuncdiff (g1,g2,g3,t0))
theorem Th98:
for
f1,
f2,
f3,
g1,
g2,
g3 being
PartFunc of
REAL,
REAL for
t0 being
Real st
f1 is_differentiable_in t0 &
f2 is_differentiable_in t0 &
f3 is_differentiable_in t0 &
g1 is_differentiable_in t0 &
g2 is_differentiable_in t0 &
g3 is_differentiable_in t0 holds
VFuncdiff (
(f1 - g1),
(f2 - g2),
(f3 - g3),
t0)
= (VFuncdiff (f1,f2,f3,t0)) - (VFuncdiff (g1,g2,g3,t0))
theorem Th99:
theorem Th100:
for
f1,
f2,
f3,
g1,
g2,
g3 being
PartFunc of
REAL,
REAL for
t0 being
Real st
f1 is_differentiable_in t0 &
f2 is_differentiable_in t0 &
f3 is_differentiable_in t0 &
g1 is_differentiable_in t0 &
g2 is_differentiable_in t0 &
g3 is_differentiable_in t0 holds
VFuncdiff (
(f1 (#) g1),
(f2 (#) g2),
(f3 (#) g3),
t0)
= |[((g1 . t0) * (diff (f1,t0))),((g2 . t0) * (diff (f2,t0))),((g3 . t0) * (diff (f3,t0)))]| + |[((f1 . t0) * (diff (g1,t0))),((f2 . t0) * (diff (g2,t0))),((f3 . t0) * (diff (g3,t0)))]|
theorem Th101:
for
f1,
f2,
f3,
g1,
g2,
g3 being
PartFunc of
REAL,
REAL for
t0 being
Real st
f1 is_differentiable_in t0 &
f2 is_differentiable_in t0 &
f3 is_differentiable_in t0 &
g1 is_differentiable_in f1 . t0 &
g2 is_differentiable_in f2 . t0 &
g3 is_differentiable_in f3 . t0 holds
VFuncdiff (
(g1 * f1),
(g2 * f2),
(g3 * f3),
t0)
= |[((diff (g1,(f1 . t0))) * (diff (f1,t0))),((diff (g2,(f2 . t0))) * (diff (f2,t0))),((diff (g3,(f3 . t0))) * (diff (f3,t0)))]|
theorem
for
f1,
f2,
f3,
g1,
g2,
g3 being
PartFunc of
REAL,
REAL for
t0 being
Real st
f1 is_differentiable_in t0 &
f2 is_differentiable_in t0 &
f3 is_differentiable_in t0 &
g1 is_differentiable_in t0 &
g2 is_differentiable_in t0 &
g3 is_differentiable_in t0 &
g1 . t0 <> 0 &
g2 . t0 <> 0 &
g3 . t0 <> 0 holds
VFuncdiff (
(f1 / g1),
(f2 / g2),
(f3 / g3),
t0)
= |[((((diff (f1,t0)) * (g1 . t0)) - ((diff (g1,t0)) * (f1 . t0))) / ((g1 . t0) ^2)),((((diff (f2,t0)) * (g2 . t0)) - ((diff (g2,t0)) * (f2 . t0))) / ((g2 . t0) ^2)),((((diff (f3,t0)) * (g3 . t0)) - ((diff (g3,t0)) * (f3 . t0))) / ((g3 . t0) ^2))]|
theorem Th103:
for
f1,
f2,
f3 being
PartFunc of
REAL,
REAL for
t0 being
Real st
f1 is_differentiable_in t0 &
f2 is_differentiable_in t0 &
f3 is_differentiable_in t0 &
f1 . t0 <> 0 &
f2 . t0 <> 0 &
f3 . t0 <> 0 holds
VFuncdiff (
(f1 ^),
(f2 ^),
(f3 ^),
t0)
= - |[((diff (f1,t0)) / ((f1 . t0) ^2)),((diff (f2,t0)) / ((f2 . t0) ^2)),((diff (f3,t0)) / ((f3 . t0) ^2))]|
theorem
theorem
for
r being
Element of
REAL for
f1,
f2,
f3,
g1,
g2,
g3 being
PartFunc of
REAL,
REAL for
t0 being
Real st
f1 is_differentiable_in t0 &
f2 is_differentiable_in t0 &
f3 is_differentiable_in t0 &
g1 is_differentiable_in t0 &
g2 is_differentiable_in t0 &
g3 is_differentiable_in t0 holds
VFuncdiff (
(r (#) (f1 + g1)),
(r (#) (f2 + g2)),
(r (#) (f3 + g3)),
t0)
= (r * (VFuncdiff (f1,f2,f3,t0))) + (r * (VFuncdiff (g1,g2,g3,t0)))
theorem
for
r being
Element of
REAL for
f1,
f2,
f3,
g1,
g2,
g3 being
PartFunc of
REAL,
REAL for
t0 being
Real st
f1 is_differentiable_in t0 &
f2 is_differentiable_in t0 &
f3 is_differentiable_in t0 &
g1 is_differentiable_in t0 &
g2 is_differentiable_in t0 &
g3 is_differentiable_in t0 holds
VFuncdiff (
(r (#) (f1 - g1)),
(r (#) (f2 - g2)),
(r (#) (f3 - g3)),
t0)
= (r * (VFuncdiff (f1,f2,f3,t0))) - (r * (VFuncdiff (g1,g2,g3,t0)))
theorem
for
r being
Element of
REAL for
f1,
f2,
f3,
g1,
g2,
g3 being
PartFunc of
REAL,
REAL for
t0 being
Real st
f1 is_differentiable_in t0 &
f2 is_differentiable_in t0 &
f3 is_differentiable_in t0 &
g1 is_differentiable_in t0 &
g2 is_differentiable_in t0 &
g3 is_differentiable_in t0 holds
VFuncdiff (
((r (#) f1) (#) g1),
((r (#) f2) (#) g2),
((r (#) f3) (#) g3),
t0)
= (r * |[((g1 . t0) * (diff (f1,t0))),((g2 . t0) * (diff (f2,t0))),((g3 . t0) * (diff (f3,t0)))]|) + (r * |[((f1 . t0) * (diff (g1,t0))),((f2 . t0) * (diff (g2,t0))),((f3 . t0) * (diff (g3,t0)))]|)
theorem
for
r being
Element of
REAL for
f1,
f2,
f3,
g1,
g2,
g3 being
PartFunc of
REAL,
REAL for
t0 being
Real st
f1 is_differentiable_in t0 &
f2 is_differentiable_in t0 &
f3 is_differentiable_in t0 &
g1 is_differentiable_in f1 . t0 &
g2 is_differentiable_in f2 . t0 &
g3 is_differentiable_in f3 . t0 holds
VFuncdiff (
((r (#) g1) * f1),
((r (#) g2) * f2),
((r (#) g3) * f3),
t0)
= r * |[((diff (g1,(f1 . t0))) * (diff (f1,t0))),((diff (g2,(f2 . t0))) * (diff (f2,t0))),((diff (g3,(f3 . t0))) * (diff (f3,t0)))]|
theorem
for
r being
Element of
REAL for
f1,
f2,
f3,
g1,
g2,
g3 being
PartFunc of
REAL,
REAL for
t0 being
Real st
f1 is_differentiable_in t0 &
f2 is_differentiable_in t0 &
f3 is_differentiable_in t0 &
g1 is_differentiable_in t0 &
g2 is_differentiable_in t0 &
g3 is_differentiable_in t0 &
g1 . t0 <> 0 &
g2 . t0 <> 0 &
g3 . t0 <> 0 holds
VFuncdiff (
((r (#) f1) / g1),
((r (#) f2) / g2),
((r (#) f3) / g3),
t0)
= r * |[((((diff (f1,t0)) * (g1 . t0)) - ((diff (g1,t0)) * (f1 . t0))) / ((g1 . t0) ^2)),((((diff (f2,t0)) * (g2 . t0)) - ((diff (g2,t0)) * (f2 . t0))) / ((g2 . t0) ^2)),((((diff (f3,t0)) * (g3 . t0)) - ((diff (g3,t0)) * (f3 . t0))) / ((g3 . t0) ^2))]|
theorem
for
r being
Element of
REAL for
f1,
f2,
f3 being
PartFunc of
REAL,
REAL for
t0 being
Real st
f1 is_differentiable_in t0 &
f2 is_differentiable_in t0 &
f3 is_differentiable_in t0 &
f1 . t0 <> 0 &
f2 . t0 <> 0 &
f3 . t0 <> 0 &
r <> 0 holds
VFuncdiff (
((r (#) f1) ^),
((r (#) f2) ^),
((r (#) f3) ^),
t0)
= - ((1 / r) * |[((diff (f1,t0)) / ((f1 . t0) ^2)),((diff (f2,t0)) / ((f2 . t0) ^2)),((diff (f3,t0)) / ((f3 . t0) ^2))]|)
theorem
for
f1,
f2,
f3,
g1,
g2,
g3 being
PartFunc of
REAL,
REAL for
t0 being
Real st
f1 is_differentiable_in t0 &
f2 is_differentiable_in t0 &
f3 is_differentiable_in t0 &
g1 is_differentiable_in t0 &
g2 is_differentiable_in t0 &
g3 is_differentiable_in t0 holds
VFuncdiff (
((f2 (#) g3) - (f3 (#) g2)),
((f3 (#) g1) - (f1 (#) g3)),
((f1 (#) g2) - (f2 (#) g1)),
t0)
= |[(((f2 . t0) * (diff (g3,t0))) - ((f3 . t0) * (diff (g2,t0)))),(((f3 . t0) * (diff (g1,t0))) - ((f1 . t0) * (diff (g3,t0)))),(((f1 . t0) * (diff (g2,t0))) - ((f2 . t0) * (diff (g1,t0))))]| + |[(((diff (f2,t0)) * (g3 . t0)) - ((diff (f3,t0)) * (g2 . t0))),(((diff (f3,t0)) * (g1 . t0)) - ((diff (f1,t0)) * (g3 . t0))),(((diff (f1,t0)) * (g2 . t0)) - ((diff (f2,t0)) * (g1 . t0)))]|
theorem
for
f1,
f2,
f3,
g1,
g2,
g3,
h1,
h2,
h3 being
PartFunc of
REAL,
REAL for
t0 being
Real st
f1 is_differentiable_in t0 &
f2 is_differentiable_in t0 &
f3 is_differentiable_in t0 &
g1 is_differentiable_in t0 &
g2 is_differentiable_in t0 &
g3 is_differentiable_in t0 &
h1 is_differentiable_in t0 &
h2 is_differentiable_in t0 &
h3 is_differentiable_in t0 holds
VFuncdiff (
(h1 (#) ((f2 (#) g3) - (f3 (#) g2))),
(h2 (#) ((f3 (#) g1) - (f1 (#) g3))),
(h3 (#) ((f1 (#) g2) - (f2 (#) g1))),
t0)
= (|[((diff (h1,t0)) * (((f2 . t0) * (g3 . t0)) - ((f3 . t0) * (g2 . t0)))),((diff (h2,t0)) * (((f3 . t0) * (g1 . t0)) - ((f1 . t0) * (g3 . t0)))),((diff (h3,t0)) * (((f1 . t0) * (g2 . t0)) - ((f2 . t0) * (g1 . t0))))]| + |[((h1 . t0) * (((diff (f2,t0)) * (g3 . t0)) - ((diff (f3,t0)) * (g2 . t0)))),((h2 . t0) * (((diff (f3,t0)) * (g1 . t0)) - ((diff (f1,t0)) * (g3 . t0)))),((h3 . t0) * (((diff (f1,t0)) * (g2 . t0)) - ((diff (f2,t0)) * (g1 . t0))))]|) + |[((h1 . t0) * (((f2 . t0) * (diff (g3,t0))) - ((f3 . t0) * (diff (g2,t0))))),((h2 . t0) * (((f3 . t0) * (diff (g1,t0))) - ((f1 . t0) * (diff (g3,t0))))),((h3 . t0) * (((f1 . t0) * (diff (g2,t0))) - ((f2 . t0) * (diff (g1,t0)))))]|
theorem
for
f1,
f2,
f3,
g1,
g2,
g3,
h1,
h2,
h3 being
PartFunc of
REAL,
REAL for
t0 being
Real st
f1 is_differentiable_in t0 &
f2 is_differentiable_in t0 &
f3 is_differentiable_in t0 &
g1 is_differentiable_in t0 &
g2 is_differentiable_in t0 &
g3 is_differentiable_in t0 &
h1 is_differentiable_in t0 &
h2 is_differentiable_in t0 &
h3 is_differentiable_in t0 holds
VFuncdiff (
(((h2 (#) f2) (#) g3) - ((h3 (#) f3) (#) g2)),
(((h3 (#) f3) (#) g1) - ((h1 (#) f1) (#) g3)),
(((h1 (#) f1) (#) g2) - ((h2 (#) f2) (#) g1)),
t0)
= (|[((((h2 . t0) * (f2 . t0)) * (diff (g3,t0))) - (((h3 . t0) * (f3 . t0)) * (diff (g2,t0)))),((((h3 . t0) * (f3 . t0)) * (diff (g1,t0))) - (((h1 . t0) * (f1 . t0)) * (diff (g3,t0)))),((((h1 . t0) * (f1 . t0)) * (diff (g2,t0))) - (((h2 . t0) * (f2 . t0)) * (diff (g1,t0))))]| + |[((((h2 . t0) * (diff (f2,t0))) * (g3 . t0)) - (((h3 . t0) * (diff (f3,t0))) * (g2 . t0))),((((h3 . t0) * (diff (f3,t0))) * (g1 . t0)) - (((h1 . t0) * (diff (f1,t0))) * (g3 . t0))),((((h1 . t0) * (diff (f1,t0))) * (g2 . t0)) - (((h2 . t0) * (diff (f2,t0))) * (g1 . t0)))]|) + |[((((diff (h2,t0)) * (f2 . t0)) * (g3 . t0)) - (((diff (h3,t0)) * (f3 . t0)) * (g2 . t0))),((((diff (h3,t0)) * (f3 . t0)) * (g1 . t0)) - (((diff (h1,t0)) * (f1 . t0)) * (g3 . t0))),((((diff (h1,t0)) * (f1 . t0)) * (g2 . t0)) - (((diff (h2,t0)) * (f2 . t0)) * (g1 . t0)))]|
theorem
for
f1,
f2,
f3,
g1,
g2,
g3,
h1,
h2,
h3 being
PartFunc of
REAL,
REAL for
t0 being
Real st
f1 is_differentiable_in t0 &
f2 is_differentiable_in t0 &
f3 is_differentiable_in t0 &
g1 is_differentiable_in t0 &
g2 is_differentiable_in t0 &
g3 is_differentiable_in t0 &
h1 is_differentiable_in t0 &
h2 is_differentiable_in t0 &
h3 is_differentiable_in t0 holds
VFuncdiff (
((h2 (#) ((f1 (#) g2) - (f2 (#) g1))) - (h3 (#) ((f3 (#) g1) - (f1 (#) g3)))),
((h3 (#) ((f2 (#) g3) - (f3 (#) g2))) - (h1 (#) ((f1 (#) g2) - (f2 (#) g1)))),
((h1 (#) ((f3 (#) g1) - (f1 (#) g3))) - (h2 (#) ((f2 (#) g3) - (f3 (#) g2)))),
t0)
= (|[(((h2 . t0) * (((f1 . t0) * (diff (g2,t0))) - ((f2 . t0) * (diff (g1,t0))))) - ((h3 . t0) * (((f3 . t0) * (diff (g1,t0))) - ((f1 . t0) * (diff (g3,t0)))))),(((h3 . t0) * (((f2 . t0) * (diff (g3,t0))) - ((f3 . t0) * (diff (g2,t0))))) - ((h1 . t0) * (((f1 . t0) * (diff (g2,t0))) - ((f2 . t0) * (diff (g1,t0)))))),(((h1 . t0) * (((f3 . t0) * (diff (g1,t0))) - ((f1 . t0) * (diff (g3,t0))))) - ((h2 . t0) * (((f2 . t0) * (diff (g3,t0))) - ((f3 . t0) * (diff (g2,t0))))))]| + |[(((h2 . t0) * (((diff (f1,t0)) * (g2 . t0)) - ((diff (f2,t0)) * (g1 . t0)))) - ((h3 . t0) * (((diff (f3,t0)) * (g1 . t0)) - ((diff (f1,t0)) * (g3 . t0))))),(((h3 . t0) * (((diff (f2,t0)) * (g3 . t0)) - ((diff (f3,t0)) * (g2 . t0)))) - ((h1 . t0) * (((diff (f1,t0)) * (g2 . t0)) - ((diff (f2,t0)) * (g1 . t0))))),(((h1 . t0) * (((diff (f3,t0)) * (g1 . t0)) - ((diff (f1,t0)) * (g3 . t0)))) - ((h2 . t0) * (((diff (f2,t0)) * (g3 . t0)) - ((diff (f3,t0)) * (g2 . t0)))))]|) + |[(((diff (h2,t0)) * (((f1 . t0) * (g2 . t0)) - ((f2 . t0) * (g1 . t0)))) - ((diff (h3,t0)) * (((f3 . t0) * (g1 . t0)) - ((f1 . t0) * (g3 . t0))))),(((diff (h3,t0)) * (((f2 . t0) * (g3 . t0)) - ((f3 . t0) * (g2 . t0)))) - ((diff (h1,t0)) * (((f1 . t0) * (g2 . t0)) - ((f2 . t0) * (g1 . t0))))),(((diff (h1,t0)) * (((f3 . t0) * (g1 . t0)) - ((f1 . t0) * (g3 . t0)))) - ((diff (h2,t0)) * (((f2 . t0) * (g3 . t0)) - ((f3 . t0) * (g2 . t0)))))]|