begin
definition
let X be
OrtAfPl;
attr X is
satisfying_DES means
for
o,
a,
a1,
b,
b1,
c,
c1 being
Element of
X st
o <> a &
o <> a1 &
o <> b &
o <> b1 &
o <> c &
o <> c1 & not
LIN b,
b1,
a & not
LIN a,
a1,
c &
LIN o,
a,
a1 &
LIN o,
b,
b1 &
LIN o,
c,
c1 &
a,
b // a1,
b1 &
a,
c // a1,
c1 holds
b,
c // b1,
c1;
attr X is
satisfying_AH means
for
o,
a,
a1,
b,
b1,
c,
c1 being
Element of
X st
o,
a _|_ o,
a1 &
o,
b _|_ o,
b1 &
o,
c _|_ o,
c1 &
a,
b _|_ a1,
b1 &
o,
a // b,
c &
a,
c _|_ a1,
c1 & not
o,
c // o,
a & not
o,
a // o,
b holds
b,
c _|_ b1,
c1;
attr X is
satisfying_3H means
for
a,
b,
c being
Element of
X st not
LIN a,
b,
c holds
ex
d being
Element of
X st
(
d,
a _|_ b,
c &
d,
b _|_ a,
c &
d,
c _|_ a,
b );
attr X is
satisfying_ODES means :
Def4:
for
o,
a,
a1,
b,
b1,
c,
c1 being
Element of
X st
o,
a _|_ o,
a1 &
o,
b _|_ o,
b1 &
o,
c _|_ o,
c1 &
a,
b _|_ a1,
b1 &
a,
c _|_ a1,
c1 & not
o,
c // o,
a & not
o,
a // o,
b holds
b,
c _|_ b1,
c1;
attr X is
satisfying_LIN means :
Def5:
for
o,
a,
a1,
b,
b1,
c,
c1 being
Element of
X st
o <> a &
o <> a1 &
o <> b &
o <> b1 &
o <> c &
o <> c1 &
a <> b &
o,
c _|_ o,
c1 &
o,
a _|_ o,
a1 &
o,
b _|_ o,
b1 & not
LIN o,
c,
a &
LIN o,
a,
b &
LIN o,
a1,
b1 &
a,
c _|_ a1,
c1 &
b,
c _|_ b1,
c1 holds
a,
a1 // b,
b1;
attr X is
satisfying_LIN1 means :
Def6:
for
o,
a,
a1,
b,
b1,
c,
c1 being
Element of
X st
o <> a &
o <> a1 &
o <> b &
o <> b1 &
o <> c &
o <> c1 &
a <> b &
o,
c _|_ o,
c1 &
o,
a _|_ o,
a1 &
o,
b _|_ o,
b1 & not
LIN o,
c,
a &
LIN o,
a,
b &
LIN o,
a1,
b1 &
a,
c _|_ a1,
c1 &
a,
a1 // b,
b1 holds
b,
c _|_ b1,
c1;
attr X is
satisfying_LIN2 means
for
o,
a,
a1,
b,
b1,
c,
c1 being
Element of
X st
o <> a &
o <> a1 &
o <> b &
o <> b1 &
o <> c &
o <> c1 &
a <> b &
a,
a1 // b,
b1 &
o,
a _|_ o,
a1 &
o,
b _|_ o,
b1 & not
LIN o,
c,
a &
LIN o,
a,
b &
LIN o,
a1,
b1 &
a,
c _|_ a1,
c1 &
b,
c _|_ b1,
c1 holds
o,
c _|_ o,
c1;
end;
:: deftheorem defines satisfying_DES CONAFFM:def 1 :
for X being OrtAfPl holds
( X is satisfying_DES iff for o, a, a1, b, b1, c, c1 being Element of X st o <> a & o <> a1 & o <> b & o <> b1 & o <> c & o <> c1 & not LIN b,b1,a & not LIN a,a1,c & LIN o,a,a1 & LIN o,b,b1 & LIN o,c,c1 & a,b // a1,b1 & a,c // a1,c1 holds
b,c // b1,c1 );
:: deftheorem defines satisfying_AH CONAFFM:def 2 :
for X being OrtAfPl holds
( X is satisfying_AH iff for o, a, a1, b, b1, c, c1 being Element of X st o,a _|_ o,a1 & o,b _|_ o,b1 & o,c _|_ o,c1 & a,b _|_ a1,b1 & o,a // b,c & a,c _|_ a1,c1 & not o,c // o,a & not o,a // o,b holds
b,c _|_ b1,c1 );
:: deftheorem defines satisfying_3H CONAFFM:def 3 :
for X being OrtAfPl holds
( X is satisfying_3H iff for a, b, c being Element of X st not LIN a,b,c holds
ex d being Element of X st
( d,a _|_ b,c & d,b _|_ a,c & d,c _|_ a,b ) );
:: deftheorem Def4 defines satisfying_ODES CONAFFM:def 4 :
for X being OrtAfPl holds
( X is satisfying_ODES iff for o, a, a1, b, b1, c, c1 being Element of X st o,a _|_ o,a1 & o,b _|_ o,b1 & o,c _|_ o,c1 & a,b _|_ a1,b1 & a,c _|_ a1,c1 & not o,c // o,a & not o,a // o,b holds
b,c _|_ b1,c1 );
:: deftheorem Def5 defines satisfying_LIN CONAFFM:def 5 :
for X being OrtAfPl holds
( X is satisfying_LIN iff for o, a, a1, b, b1, c, c1 being Element of X st o <> a & o <> a1 & o <> b & o <> b1 & o <> c & o <> c1 & a <> b & o,c _|_ o,c1 & o,a _|_ o,a1 & o,b _|_ o,b1 & not LIN o,c,a & LIN o,a,b & LIN o,a1,b1 & a,c _|_ a1,c1 & b,c _|_ b1,c1 holds
a,a1 // b,b1 );
:: deftheorem Def6 defines satisfying_LIN1 CONAFFM:def 6 :
for X being OrtAfPl holds
( X is satisfying_LIN1 iff for o, a, a1, b, b1, c, c1 being Element of X st o <> a & o <> a1 & o <> b & o <> b1 & o <> c & o <> c1 & a <> b & o,c _|_ o,c1 & o,a _|_ o,a1 & o,b _|_ o,b1 & not LIN o,c,a & LIN o,a,b & LIN o,a1,b1 & a,c _|_ a1,c1 & a,a1 // b,b1 holds
b,c _|_ b1,c1 );
:: deftheorem defines satisfying_LIN2 CONAFFM:def 7 :
for X being OrtAfPl holds
( X is satisfying_LIN2 iff for o, a, a1, b, b1, c, c1 being Element of X st o <> a & o <> a1 & o <> b & o <> b1 & o <> c & o <> c1 & a <> b & a,a1 // b,b1 & o,a _|_ o,a1 & o,b _|_ o,b1 & not LIN o,c,a & LIN o,a,b & LIN o,a1,b1 & a,c _|_ a1,c1 & b,c _|_ b1,c1 holds
o,c _|_ o,c1 );
theorem
theorem
theorem Th3:
theorem
theorem
theorem