begin
Lm1:
for Y being non empty set
for a, b being Element of Funcs (Y,BOOLEAN) holds a '&' b '<' a
Lm2:
for Y being non empty set
for a, b, c being Element of Funcs (Y,BOOLEAN) holds
( (a '&' b) '&' c '<' a & (a '&' b) '&' c '<' b )
Lm3:
for Y being non empty set
for a, b, c, d being Element of Funcs (Y,BOOLEAN) holds
( ((a '&' b) '&' c) '&' d '<' a & ((a '&' b) '&' c) '&' d '<' b )
Lm4:
for Y being non empty set
for a, b, c, d, e being Element of Funcs (Y,BOOLEAN) holds
( (((a '&' b) '&' c) '&' d) '&' e '<' a & (((a '&' b) '&' c) '&' d) '&' e '<' b )
Lm5:
for Y being non empty set
for a, b, c, d, e, f being Element of Funcs (Y,BOOLEAN) holds
( ((((a '&' b) '&' c) '&' d) '&' e) '&' f '<' a & ((((a '&' b) '&' c) '&' d) '&' e) '&' f '<' b )
Lm6:
for Y being non empty set
for a, b, c, d, e, f, g being Element of Funcs (Y,BOOLEAN) holds
( (((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g '<' a & (((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g '<' b )
Lm7:
for Y being non empty set
for a, b, c, d, e, f, g being Element of Funcs (Y,BOOLEAN) holds
( ((((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g) 'imp' a = I_el Y & ((((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g) 'imp' b = I_el Y & ((((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g) 'imp' c = I_el Y & ((((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g) 'imp' d = I_el Y & ((((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g) 'imp' e = I_el Y & ((((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g) 'imp' f = I_el Y & ((((((a '&' b) '&' c) '&' d) '&' e) '&' f) '&' g) 'imp' g = I_el Y )
theorem Th1:
theorem Th2:
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem Th19:
theorem
theorem Th21:
theorem Th22:
theorem
theorem Th24:
Lm8:
for Y being non empty set
for a1, b1, c1, a2, b2, c2 being Element of Funcs (Y,BOOLEAN) holds (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (c2 '&' a2))) '&' ('not' (c2 '&' b2))) = I_el Y
Lm9:
for Y being non empty set
for a1, b1, c1, a2, b2, c2 being Element of Funcs (Y,BOOLEAN) holds (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((((a1 'imp' a2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (b2 '&' a2))) '&' ('not' (b2 '&' c2))) = I_el Y
Lm10:
for Y being non empty set
for a1, b1, c1, a2, b2, c2 being Element of Funcs (Y,BOOLEAN) holds (((((((a1 'imp' a2) '&' (b1 'imp' b2)) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) '&' ('not' (b2 '&' c2))) 'imp' (((((b1 'imp' b2) '&' (c1 'imp' c2)) '&' ((a1 'or' b1) 'or' c1)) '&' ('not' (a2 '&' b2))) '&' ('not' (a2 '&' c2))) = I_el Y
theorem
theorem Th26:
theorem
theorem
theorem
theorem
theorem
theorem
theorem
theorem Th34:
theorem
theorem
theorem
theorem
theorem Th39:
theorem